
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 1

Platform-Independent Dynamic Taint Analysis
for JavaScript

Rezwana Karim, Frank Tip∗, Alena Sochůrková, and Koushik Sen†

Abstract—Previous approaches to dynamic taint analysis for JavaScript are implemented directly in a browser or JavaScript engine,
limiting their applicability to a single platform and requiring ongoing maintenance as platforms evolve, or they require nontrivial program
transformations. We present an approach that relies on instrumentation to encode taint propagation as instructions for an abstract
machine. Our approach has two key advantages: it is platform-independent and can be used with any existing JavaScript engine, and it
can track taint on primitive values without requiring the introduction of wrapper objects. Furthermore, our technique enables multiple
deployment scenarios by varying when and where the generated instructions are executed and it supports indirect taint sources, i.e.,
situations where taint enters an application via arguments passed to dynamically registered event-listener functions. We implemented
the technique for the ECMAScript 5 language in a tool called Ichnaea, and evaluated it on 22 NPM modules containing several types of
injection vulnerabilities, including 4 modules containing vulnerabilities that were not previously discovered and reported. On these
modules, run-time overheads range from 3.17x to 38.42x, which is significantly better than a previous transformation-based technique.
We also report on a case study that shows how Ichnaea can be used to detect privacy leaks in a Tizen web application for the
Samsung Gear S2 smart watch.

Index Terms—Taint analysis, dynamic analysis, JavaScript, platform-independent, instrumentation.

F

1 INTRODUCTION

JavaScript applications commonly operate on untrusted or
confidential information. The use of such data must be
controlled carefully in order to avoid security vulnerabil-
ities and privacy leaks. For example, a privacy leak may
arise if confidential information is allowed to flow to an
operation such as an HTTP request where data is pub-
licly disclosed. Similarly, injection vulnerabilities may exist
if unsanitized input data is allowed to flow to the eval

function, which interprets a string value as executable code,
or, on the Node.js platform, to the child_process.exec

function, which interprets a string value as an executable
shell command. Since the use of unsafe operations such as
eval is pervasive [1], such vulnerabilities are quite common
as is evident from many reported issues on forums such as
https://nodesecurity.io/, and a recent study reported that
many Node Package Manager (NPM) modules are riddled
with injection vulnerabilities [2].

Dynamic taint analysis is a data-flow analysis technique
for determining expressions whose value indirectly is de-
rived from specified input values. Privacy leaks and security
vulnerabilities can be detected using dynamic taint analysis

∗Most of the work of this author was carried out during his employment at
Samsung Research America.
†The work of this author was carried out during his employment at Samsung
Research America.

• R. Karim is with Samsung Research America. E-mail:
rezwana.k@samsung.com.

• F. Tip is with the College of Computer and Information Science, North-
eastern University. E-mail: f.tip@northeastern.edu.

• A. Sochůrková is with Avast. E-mail: sochurkova.alena@gmail.com.
• K. Sen is with the University of California at Berkeley. E-mail:

ksen@berkeley.edu.

Manuscript received XXX XX, 2016; revised XXX XX, 2017.

by tracking the flow of data from “sources” where private
or confidential information enters the application to “sinks”
where such information is disclosed or manipulated. In
principle, our technique can be used for any application
of dynamic taint analysis assuming that the application’s
source code is available. However, we choose to focus
our attention on usage scenarios where taint analysis is
performed in-house by developers prior to deployment.
An example of such a scenario is one where a JavaScript
application depends on third-party libraries or modules that
may contain vulnerabilities [3]. Due to the highly dynamic
nature of the JavaScript language, such vulnerabilities may
not be easily discernible through source code inspection.
Using our dynamic taint analysis, developers can detect
such vulnerabilities prior to deployment, by creating and
running tests with taint tracking enabled.

Most previous approaches to dynamic information flow
analysis1 for JavaScript require modification of an inter-
preter or JavaScript engine to keep track of information
flows during execution [4], [5], [6], [7]. While such an
approach has significant performance advantages, the re-
sulting analysis becomes platform-specific, which limits
its applicability, especially in cases where applications be-
have differently on different platforms2. Therefore, infor-
mation flows detected during execution of an application
on one browser may or may not happen when another
browser is used. Approaches based on modification of a
JavaScript engine also have the significant drawback that

1. In the remainder of this paper, we will use terms ‘taint analysis’
and ‘information flow analysis’ interchangeably.

2. For example, web sites that include social media plugins com-
monly use conditional loading and execution of JavaScript code to
avoid displaying certain information (e.g., “like counts”) in order to
reduce load time on mobile devices.

https://nodesecurity.io/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 2

ongoing maintenance is required, given that browsers tend
to evolve quickly. Other previous work includes a platform-
independent technique [8] that relies on wrapping primitive
values and other nontrivial program transformations that
incur significant runtime overheads.

In this paper, we pursue a platform-independent approach
to dynamic taint analysis for JavaScript that is based
on code instrumentation. While instrumentation-based ap-
proaches to dynamic taint analysis have been pursued in
other settings (e.g., the DTA tool [9] implements a dy-
namic taint analysis on top of Intel’s binary instrumenta-
tion framework Pin [10]), to our knowledge, we present
the first instrumentation-based dynamic taint analysis for
JavaScript. Our solution handles the ECMAScript 5 lan-
guage3 and is implemented using the Jalangi instrumenta-
tion framework [11].

The basic idea behind our approach is to instrument
JavaScript source code so that, for each JavaScript source
construct that is executed, instructions are issued for an
abstract machine. Executing these abstract machine instruc-
tions reflects the flow of taint between abstract locations that
represent memory locations manipulated by the original ap-
plication. The abstract machine is implemented as a domain-
specific language (DSL) that is embedded in JavaScript.
This approach has two key advantages: (i) it is platform-
independent and can be used with any existing JavaScript
engine, and (ii) it can track taint on primitive values such
as numbers and strings without requiring the introduction
of wrapper objects. Furthermore, the technique provides
flexibility as to when and where to perform the analysis
(the instructions can either be executed on-line on the same
device, or they can be transmitted for offline execution)
and it supports indirect taint sources, where taint information
enters an application as arguments passed to user-defined
callback functions that are registered with a known API, a
scenario that arises in Tizen web applications [12].

We implemented the technique for the ECMAScript 5
language in a tool called Ichnaea, which builds on Jalangi
[11], an open-source code instrumentation framework for
JavaScript. One of the key challenges in our implementation
involved modeling how taint is propagated through native
functions, particularly for higher-order functions such as
Array.prototype.reduce.

To demonstrate the practicality of our technique, we
applied Ichnaea to 22 modules for the Node.js platform con-
taining several types of injection vulnerabilities, including
4 modules containing vulnerabilities that were not reported
previously, and confirmed that Ichnaea reports the expected
taint flows when these modules are invoked in ways that
trigger a vulnerability. On these modules, we observed run-
time overheads ranging from 3.17x to 38.42x compared to
uninstrumented execution, which is significantly faster than
a previous transformation-based information-flow analysis
for JavaScript [8] (see Section 6). Additionally, we report on
a case study that shows how the technique can be applied
to detect privacy leaks in a JavaScript web application for
the Tizen platform that runs on a Samsung Gear S2 smart
watch.

3. Subject to some minor restrictions that we inherit from Jalangi.

original
app

instrumented app

Jalangi

execute with JS engine

execute with
JS engine

abstract stack machine

execute with JS engine

taint flows

1

2

3

4
5

taint
specification

JavaScript code running in production

JavaScript code running in QA/testing

Fig. 1. Overview of Approach.

In summary, this paper makes the following contribu-
tions:

• A platform-independent dynamic taint analysis for the
ECMAScript 5 language. The technique is capable of
tracking taint on primitive values without requiring
boxing.

• Our technique is capable of tracking taint precisely
through calls to native higher-order functions by rely-
ing on user-specified taint specifications.

• An implementation of the technique in a tool called
Ichnaea.

• An evaluation of Ichnaea that demonstrates its practi-
cality by confirming the flow of tainted input data in
Node.js modules with known and previously unknown
vulnerabilities, and through a case study in which the
technique is applied to detect privacy leaks in a Tizen
web application.

2 OVERVIEW

This section presents an informal overview of our dynamic
taint analysis technique and illustrates it using a motivating
example.

2.1 Approach
The diagram in Figure 1 shows a high-level overview of
our approach. The top part of the figure visualizes the
execution of a JavaScript application with an unmodified
browser or JavaScript engine (see arrow labeled 1©). Here,
the program’s execution results in the normal application
behavior. As an example, one may consider running a
JavaScript application on the Node.js platform [13], or run-
ning a JavaScript web application for the Tizen operating
system on a Samsung Gear S2 SmartWatch.

Our approach requires that the application’s JavaScript
source code be instrumented. In addition to the source code
for the original application and any libraries and frame-
works that it depends upon, the instrumentation takes as
input a taint specification that specifies sources and sinks.
This instrumentation is visualized in the diagram using
downward arrows labeled 2©. The instrumentation is imple-
mented using the Jalangi instrumentation framework [11]
and will be discussed in detail in Section 4.

Executing the resulting instrumented JavaScript appli-
cation using an unmodified browser or JavaScript engine

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 3

yields the same execution behavior as before (arrow 3©)
but additionally produces instructions for an abstract ma-
chine (arrow 4©), which is implemented as a domain-
specific language in JavaScript. Executing these abstract
machine instructions using an unmodified JavaScript en-
gine or browser (arrow 5©) produces a report about in-
formation flows from specified sources to specified sinks
that took place in the execution labeled 3©. Note that this
approach provides flexibility in terms of where and when
the generated abstract machine instructions are executed.
For example, they can be executed on the same platform
as the original application, or they can be transmitted and
executed on a server elsewhere.

2.2 Example Application
Figure 2 shows a small Node.js application, which prints the
contents of a directory in uppercase font. The shading and
labeling of code fragments in the figure will be explained
when we discuss the generation of abstract machine instruc-
tions and can be ignored for now. Executing the application
with command-line argument "." will print the contents
of the current directory after converting all characters to
uppercase. This is accomplished by concatenating the in-
put value "." that was passed on the command line to
a string literal ’ls ’, executing the resulting string value
as a shell command using the exec function provided by
the child_process module, converting the output produced
by that command to uppercase, and printing the resulting
value.

The example application has a command-injection vul-
nerability that is similar to vulnerabilities in several of the
Node.js modules that we used to evaluate our technique
(see Section 5). This vulnerability can be demonstrated by
executing the application with a command-line argument
".;touch xyzzy". In this case, since the input value is
passed to the exec command unmodified, the string "ls

.;touch xyzzy" is passed to exec. Since ; is used to delimit
shell commands, the call to exec now has the effect of
executing two commands, where the second command has
the effect of creating a file xyzzy in the local directory4.
Injection vulnerabilities may also arise in the presence of
eval, a widely-used function for interpreting a string value
as JavaScript code and executing it [1]5.

Figure 3 shows the taint specification and configura-
tion parameters for analyzing the above Node.js appli-
cation. Lines 9–14 define the sources and sinks for the
analysis. In general, one can use these lines to specify
the names of functions that serve as sources and sinks,
respectively. In the example given here, exec is listed as
a sink on line 12, and no function is listed as a taint
source. Instead, command-line arguments are defined as
sources of tainted data by setting the configuration param-
eter taintNodeCommandLineInput to true on line 15. Alter-
natively, the parameter taintAllUserDefinedString (set to
false here) can be set to true if any user-defined string

4. In general, any type of shell command can be injected in a similar
fashion, including commands with harmful effects such as deleting
files.

5. Note that on the Node.js platform, it may be possible to inject a
call to child_process.exec into the code that is executed by eval,
thus providing attackers with significant control over the platform.

should be treated as a source of tainted data. The analysis
can be further configured to report the location of the
taint flow and to report either only the first taint flow, or
all taint flows using the reportFlowLocation (line 17) and
reportAllFlows (line 18) parameters.

2.3 Execution Behavior
Before we discuss how our taint analysis tracks flows from
input values to invocations of functions such as exec, we
need to consider the execution behavior of the example
application in more detail. Execution begins on line 1 by
executing the require function in order to import the
child_process module and assigning the resulting value
to a variable child_process, through which the module’s
functionality can be accessed henceforth. Next, line 2 cre-
ates an array containing a string ’ls ’ and assigns it
to a variable a. On line 3, the argument passed to our
example application is retrieved by reading the value at
index 2 in the array process.argv (note that the element
at index 0 in process.argv is the fully qualified filename
of the node command, and the element at index 1 is the
fully qualified filename of the application, in this case,
uppercasels.js). Line 5 invokes a native library function
Array.prototype.reduce to concatenate all arguments of
array a, preceded by a string ’ ’, by repeatedly invoking
the callback function cb. The resulting value is stored into
a variable command on line 4. Finally, on lines 6–8, the exec

function is invoked to execute the command. The second ar-
gument passed to exec is a callback function that is invoked
with three arguments: (i) a code err indicating whether an
error occurred, (ii) a string stdout containing output written
by the shell command to the standard output stream, and
(iii) a string stderr containing output written by the shell
command to the standard error stream. If no error was
detected, the string written to standard output is converted
to upper case by invoking the native String.toUpperCase

function (line 7), and printed to the console.

2.4 Abstract Machine
The basic idea behind our taint analysis is that the source
code of the original application p is instrumented so that
instructions for an abstract machine are emitted during
execution. The generated instructions manipulate a stack
of abstract values that reflect the taintedness of values on
the runtime stack of p. The abstract machine maintains
maps that associate abstract values with local variables
and object properties, reflecting the taintedness of values
stored therein. Abstract values are sets of locations, each
represented by a string that identifies a filename and line
number. Instructions for the abstract machine include op-
erations such as push and pop for pushing and popping
taint values, unaryop and binaryop for the evaluation of
unary and binary expressions, initvar, readvar, writevar
for initializing, reading, and writing taint values associ-
ated with local variables, and initproperty, readproperty,
and writeproperty instructions for initializing, reading, and
writing taint values associated with object properties. In the
remainder of this section, we informally discuss some of the
steps in generating instructions for the example of Figure 2.
A more complete and precise exposition follows in Section 3.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 4

1 var child_process = require(’child_process’);

2 var a = [’ls ’];
l1

3 a[1] = process.argv[2];
l2

4 var command =
l3

5 a.reduce
l4,l5,l6

(function cb(x,y)
l7,l8

{ return x+y;
l9 }, ’ ’);

6 child_process.exec(command, function(err,stdout,stderr){
7 if (!err){ console.log(stdout.toUpperCase()); }
8 });

Fig. 2. Example Node.js application uppercasels.js.

9 Spec.taintSpec = {
10 "source" : [],
11 "sink" : [
12 {"name": "exec"}
13]
14 };
15 Spec.taintNodeCommandLineInput = true;
16 Spec.taintAllUserDefinedString = false;
17 Spec.reportFlowLocation = true;
18 Spec.reportAllFlows = true;

Fig. 3. Taint specification for uppercasels.js.

19 push(false); // load taint value for literal ’ls’
20 initproperty(’obj7’,’0’); // initialize element 0 of array ’obj7’
21 push(false); // load taint value for array literal
22 writevar(’frame3:a’); // store taint for variable ’a’
23 pop(); // discard taint of assignment expression

l1

24 readvar(’frame3:a’); // load taint for variable ’a’
25 push(false); // load taint for index expression ’1’
26 readvar(’frame5:process’); // load taint for variable ’process’
27 push(false); // taint value for ’argv’
28 readproperty(’obj9’, ’argv’); // read taint of property ’argv’ of object ’obj9’
29 push(false); // taint value for literal ’2’
30 readproperty(’obj11’, ’2’); // read taint for element ’2’ of array ’obj11’
31 pop(); // discard previously read taint value
32 push(’(example.js:3:8)’); // introduce taint value ’(example.js:3:8)’
33 writeproperty(’obj7’, ’1’); // store taint in element 2 of array ’obj7’
34 pop(); // discard taint of assignment expression

l2

35 readvar(’frame3:a’); // load taint for variable ’a’
36 push(false); // taint value for ’reduce’
37 readproperty(’obj13’,’reduce’); // read taint of property ’reduce’ of object ’obj13’
38 push(false); // taint value for function literal
39 push(false); // taint value for string literal ’ ’
40 push(false); // taint value for receiver object

l4

41 pop(); // discard taint of receiver object
42 initvar(’_accum_’); // initialize variable _accum_
43 pop(); // discard taint associated with callback function

l5

44 readvar(’_accum_’); // read taint in variable _accum_
45 push(false); // taint value for arguments array of ’reduce’
46 push(false); // taint value for index ’0’
47 readproperty(’obj7’, ’0’); // read taint of element ’0’ in array ’obj7’

l7

48 push(false); // taint value for array ’obj17’
49 push(false); // taint value for index ’0’
50 readproperty(’obj17’, ’0’); // load taint for element ’0’ of array ’obj17’
51 push(false); // taint value for array ’obj17
52 push(false); // taint value for index ’1’
53 readproperty(’obj17’, ’1’); // load taint for element ’0’ of array ’obj17’
54 binaryop(’+’); // apply binary ’+’ operator
55 writevar(’_ret_’); // store taint in special variable _ret_
56 pop(); // discard taint value at top of the stack

l9

57 readvar(’_ret_’); // load taint in special variable _ret_
58 writevar(’_accum_’); // store taint in variable _accum_
59 pop(); // discard taint value at top of the stack

l8

60 readvar(’_accum_’); // load final value in _accum_
61 writevar(’_ret_’); // store taint in special variable _ret_
62 pop(); // discard taint value at top of the stack

l6

63 pop(); // pop taint of invoked function
64 readvar(’_ret_’); // push returned value upon return from call
65 writevar(’frame3:command’); // store taint in variable ’command’
66 pop(); // discard taint of assignment expression

l3

Fig. 4. Abstract machine instructions generated for the application of Figure 2.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 5

2.5 Example: Generating Instructions
Figure 4 illustrates the generation of abstract machine in-
structions for some of the code fragments that are shown
labeled in Figure 2. For the purposes of this example, it is
assumed that command-line arguments (i.e., elements of the
array process.argv) are sources of tainted data, and that the
exec function is a sink. Here, each source of taint is assumed
to be uniquely identified by a program location.

The execution behavior of the generated abstract ma-
chine instructions will be discussed in Section 3.1 and sum-
marized in Figure 8, and the process of generating abstract
machine instructions will be presented in Table 1. In the
remainder of the discussion about the example, we con-
vey the intuition behind the instruction generation process
informally, referring to the reader to specific instructions
in Figure 8 for further explain the instruction generation
process.

The instructions in the block labeled l1 are generated
as a result of executing line 2, where an array is created
and assigned to a variable a. First, on line 19, a push

instruction (see instruction Inspush in Figure 8) is generated
to push the value false6 onto the stack, reflecting the fact
that the string literal ’ls ’ on line 2 is untainted. Then,
on line 20, an instruction initproperty(’obj7’, ’0’) (see
instruction Insinitproperty) is generated that has the effect
of popping this taint value from the stack and associating
it with element 0 of a newly created array that is uniquely
identified by an identifier obj7. Section 4 will discuss how
such object identifiers are obtained.

Next, on line 21 a value false is pushed onto the stack to
indicate that the array literal itself is untainted as well, and
the instruction writevar(’frame3:a’) on line 22 associates
this taint value with variable a. Here, frame3 is an identifier
that uniquely identifies the run-time instance of variable a.

The writevar instruction does not pop the stack (see
instruction Inswritevar in Figure 8), reflecting the fact an
assignment expression such as the one on line 2 evaluates to
the same value as its right-hand side. In this case, the value
computed by the assignment is discarded (i.e., not assigned
to some other variable), so an additional pop instruction is
generated on line 23 to discard the corresponding taint value
as well7.

The instructions in block l2 are generated as a result of
executing the statement a[1] = process.argv[2] on line 3,
and illustrate how taint is introduced when a source is
encountered. These generated instructions reflect reading a
tainted value from the array process.argv and associating it
with element 1 of array a. This involves the following steps:
(i) pushing the taint value corresponding to the receiver
expression a onto the stack (line 24), (ii) pushing the taint
value corresponding to the index expression 1 onto the stack
(line 25), (iii) computing the taint value that is to be written
and pushing it onto the stack (lines 26-32), (iv) generating
a writeprop instruction to associate this value with the
specified array element (line 33) without removing it from
the stack (see instruction Inswriteprop in Figure 8), and (v)

6. The value false is used to represent the empty set of locations.
7. Such pop instructions are omitted if assignments are chained.

For example, consider an expression a = b = c, where variable c
holds a tainted value. Here, the tainted value produced by the nested
assignment expression b = c must be propagated to the variable a.

discarding the value computed by the assignment (line 34)8.
Here, step (iii) reflects the evaluation of the expression
process.argv[2], which involves retrieving the taint value
associated with property argv of object process (lines 26–
28), and retrieving the taint value associated with element 2
of the array (lines 29–30). At this point, taint is introduced
by discarding the previously read taint value (line 31) and
pushing a taint value ‘(example.js:3:8)’ (line 32).

The instructions in block l4 are generated when the
call to Array.prototype.reduce on line 5 is encountered
on array a, and reflect reading the taint value for the
property reduce in the prototype of object a (lines 35–37),
and pushing taint values false for the two arguments and
the receiver (lines 38–40).

2.6 Native Functions

At this point, instructions need to be generated for opera-
tions performed by the function Array.prototype.reduce.
However, since this function is implemented natively, an
instrumentation-based technique such as ours cannot ob-
serve these operations. To handle such cases, our approach
relies on manually crafted models for native functions. A
key challenge that arises here is that native functions such
as Array.prototype.reduce invoke callbacks, so operations
performed by native functions may be interleaved with
operations performed by (native or non-native) callback
functions.

To illustrate how we handle such cases, consider that
reduce traverses an array from beginning to end and re-
peatedly invokes a callback function cb to two arguments,
x and y. Here, x is bound to an “accumulator” that is
initialized with the second argument passed to reduce, and
y is bound to the array element that is currently being
visited. At the end of each iteration, the value computed by
cb is assigned to the accumulator. When the end of the array
is reached, reduce returns the final value of the accumulator.
To track the flow of taint precisely, we must track the flow
of taint: (i) from the second argument of reduce to the
accumulator, (ii) from the accumulator to the first argument
of the callback function cb, (iii) from the return value of
cb to the accumulator, and (iv) from the accumulator to
the return value of reduce. To account for this, our native
models consist of 4 parts, consisting of instructions to be
emitted: (i) upon invocation of a native function, (ii) before
a callback function starts executing, (iii) when a callback
function has finished executing, and (iv) upon return from
a native function. Note that this represents the most general
case. In practice, many native models do not require all four
of these components.

Returning to the example, the instructions in block l5
capture the propagation of taint from the 2nd argument of
reduce to parameter x of callback cb, which involves (i)
discarding the taint of the receiver (line 41), (ii) initializing a
special variable _accum_ with the taint value associated with
the accumulator (line 42), and (iii) discarding the taint value
associated with the callback function itself (line 43).

8. The purpose for leaving the current value on the stack in step (iv)
and generating a separate pop instruction in step (v) is to enable the
uniform modeling of chained property assignments of the form d =
b.c = a in the instruction generation process.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 6

File: main.js

58 // invoked upon activation of the application
59 function activate() {
60 ...
61 tizen.humanactivitymonitor.start(’HRM’,
62 updateHeartRate);
63 ...
64 }
65 // invoked when new heart-rate information
66 // becomes available
67 function updateHeartRate(hrmInfo) {
68 ...
69 lastHeartRate = hrmInfo.heartRate;
70 ...
71 if (hrmInfo.heartRate < 103.95) {
72 elem_outter.style.color = ’’;
73 if (oldHeartRate >= 103.95) {
74 navigator.vibrate(2000);
75 }
76 }
77 ...
78 oldHeartRate = hrmInfo.heartRate;
79 }

File: rss.js

80 var XML_ADDRESS =
81 "http://feeds.arstechnica.com/
82 arstechnica/index/",
83 XML_METHOD = "GET",
84 ...
85 function getDataFromXML() {
86 var xmlhttp,
87 ...
88 xmlhttp = new XMLHttpRequest();
89 xmlhttp.open(XML_METHOD, XML_ADDRESS, true);

Fig. 5. Code fragments from personal-watchface.

The block of instructions labeled l7, is generated upon
entry to the callback function cb and includes instructions
for reading the taint value associated with the accumulator
(line 44) and the taint value associated with the function
literal that is provided as the first argument to the reduce

invocation (lines 45–47).
At this point, execution reaches the callback function cb.

This leads to the generation of the instructions in block l9,
which involves retrieving the taint values associated with
variables x (lines 48–50) and y (lines 51–53)9, and applying
the binary + operator (line 54), which has the effect of com-
puting the union of the sets of taint locations and pushing
the resulting value onto the stack. Line 55 stores this value in
a special variable _ret_, which is used to model the passing
of return values from a callee to its caller. Line 56 discards
the taint value at the top of the stack.

The block of instructions labeled l8, is generated upon
exit from the callback function cb and includes instruc-
tions for reading special variable _ret_ containing the taint
associated with the value that was just returned by the
callback function (line 57), and using this value to update
the accumulator (line 58).

The instructions in block l6 are generated just before
execution returns from reduce, and this involves reading the
final value in the accumulator (line 60) and storing it into the
special variable _ret_ (line 61). In block l3, the value stored
in _ret_ is retrieved (line 64) and then used to update the
taint value associated with the variable command (line 65).
Additional instructions (not shown) are generated for the
call to exec (lines 6–8). Since exec is specified as a sink for
our analysis, a report instruction is issued that generates a
taint report.

2.7 Indirect taint sources
We also explored how our technique can be used to de-
tect possible privacy leaks in personal-watchface, an open-
source JavaScript application for the Samsung Gear S2

9. As identified by their position in the arguments array.

SmartWatch10. This application requests permission to ac-
cess health-related data so that it can visualize the heart
rate on the screen and vibrate when the target heart rate
is exceeded. Furthermore, it requests internet permission
to retrieve news headlines from https://arstechnica.com/,
which it also displays on the screen.

In principle, this combination of permissions could pose
a privacy risk, because it enables an application to transmit
health-related data to a third-party site by embedding it
in an HTTP request. To see how such privacy leaks might
arise, consider Figure 5, which shows selected fragments of
the source code of personal-watchface. When the application
is started, function activate (lines 59–64 in file main.js

is invoked. On line 61, this function registers a callback
function updateHeartRate (lines 67–79) as a listener for
the heart-rate monitor. Hence, from this point onwards,
function updateHeartRate is invoked periodically by the
run-time system with an argument hrmInfo that has a prop-
erty heartRate containing the latest heart rate. Lines 71–76
show some logic that examines the heart rate to determine
when the device should vibrate. In file rss.js, a function
getDataFromXML constructs an XMLHttpRequest on line 89
to request news items from the https://arstechnica.com/.
In this case, the URL originates from line 81, where it can
be seen that no confidential information is transmitted as
part of the HTTP request. However, it is easy to see how a
privacy leak could be introduced, e.g. by changing line 89
to:

xmlhttp.open(XML_METHOD,

XML_ADDRESS+’?hr=’+lastHeartRate, true);

Note that, in this scenario, taint sources have a slightly
different form from the situation in Figure 2. In that exam-
ple, taint originated in elements of the array process.argv,
i.e., in properties of objects stored in the variable argv. In the
Tizen example, however, tainted values originate in proper-

10. Available from https://github.com/offbynull/
personal-watchface.

https://github.com/offbynull/personal-watchface
https://github.com/offbynull/personal-watchface

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 7

90 Spec.taintSpec = {
91 "source" : [
92 {"name":"tizen.humanactivitymonitor.start",
93 "direct":false}
94],
95 "sink" : [
96 {"name": "XMLHttpRequest.prototype.open"}
97]
98 };

Fig. 6. Taint specification for personal-watchface.

ties of objects bound to arguments of callback functions such
as updateHeartRate that are invoked by the runtime system,
where the name of such functions is determined at run time.
In other words, specifying such taint sources involves a
level of indirection: the tool user must specify the name
of a function such as tizen.humanactivitymonitor.start

that registers a callback function for which taint origi-
nates in arguments of that function when it is invoked
by the runtime system. Figure 6 shows how support for
such indirect taint sources is expressed. This taint specifi-
cation lists tizen.humanactivitymonitor.start as an indi-
rect taint source. This means that all properties of argu-
ments of callbacks passed to this function are assumed
to be tainted. In other words, from this specification, Ich-
naea infers that if a function f is passed as a callback to
tizen.humanactivitymonitor.start, then all properties of
objects passed in calls to f are tainted.

3 TAINT ANALYSIS

For ease of exposition, we begin by presenting our technique
for a core subset of JavaScript, for which a grammar is
shown in Figure 7. In defining this subset, we make several
simplifying assumptions (e.g., that functions always return
values using explicit return statements) and we omit fea-
tures such as control flow constructs, exception handling,
property access using the “.” operator, and arrays. The fea-
tures excluded here are handled similarly as ones discussed.
Details on how to handle JavaScript language features out-
side of the core subset are discussed in Section 3.3.

3.1 Abstract Machine

Figure 8 defines the instruction set for the Abstract Machine.
The abstract machine operates on a stack of taint values
that reflect the “taintedness” of values on the runtime stack.
Here, taint values consist of sets of source locations (each
identified by a file name and position within that file).
The value false is used as a shorthand to refer to the
empty set of locations. The abstract machine also maintains
maps that associate taint values with local variables and
object properties, reflecting the taintedness of values stored
therein.

The instruction set for the abstract machine includes
operations push and pop for pushing a taint value onto the
stack, and popping it off the stack, respectively. The unaryop

instruction pops the taint value from the top of the stack and
applies an operator-specific function to it (e.g., applying the
unary-plus operator to a taint value results in the same taint

value), and pushes the resulting taint value onto the stack.
Similarly, the binaryop operator pops two taint values from
the stack, applies an operator-specific function to it (e.g.,
applying the binary string-concatenation operator computes
a new taint value using set-union), and pushes the resulting
value onto the stack.

The initvar, readvar, writevar, and setvar instructions
serve to initialize, read, write and set the taint values associ-
ated with local variables. In particular, initvar(v) creates a
new map entry for the taint value associated with variable v,
pops the stack, and stores the popped value in it. Likewise,
readvar(v) reads the taint value associated with v and
pushes it onto the stack, and writevar(v) stores the value
at the top of the stack in the map entry for v. setvar(v,
val) sets the taint value of v to val. Similarly, initproperty,
readproperty, and writeproperty initialize, read, and write
the taint values associated with object properties. Each of
these instructions takes two arguments: an object identifier
(OID), which uniquely represents an object during the ob-
served program execution, and a string value representing
the name of the property being accessed. The process of
obtaining these object identifiers is briefly discussed in
Section 4. The deleteop instruction is emitted when a prop-
erty is removed from an object using JavaScript’s delete

operator. This instruction pops the taint of the operand from
the stack, removes the entry for the deleted object property
from the taint map, and pushes the resulting taint value onto
the stack.

3.2 Generating Instructions

Table 1 shows, for each language construct s under consid-
eration, the abstract machine instructions that are generated
as a side-effect of executing s. In these rules, it is assumed
that, for complex expressions and statements, the generation
of abstract machine instructions for subexpressions has al-
ready taken place (such subexpressions are shown in grey in
the table). For example, when a numeric literal value “17” is
encountered during execution, an instruction push(false)

is emitted, indicating that a non-tainted11 value is currently
at the top of the stack. Similarly, executing a read-reference
to a variable x will emit an instruction readvar(x), resulting
in pushing the taint value associated with x onto the stack.
In the case of executing a binary expression v + w, the rule
shown in Table 1 assumes that the subexpressions v and w

have already executed, so the top two elements of the stack
will contain the taint values associated with these variables.
The execution of the + expression itself will result in issuing
a binaryop(’+’) instruction.

Finally, we consider the execution of function calls and
return statements. Executing a statement return e (for some
expression e) assumes that subexpression e has already
executed, causing the top of the stack to contain the taint
value associated with that expression. The execution of the
return statement itself is modeled by emitting an instruction
writevar(’_ret_’), where _ret_is a special variable that we
use to the store the taint associated with the return value
temporarily. This variable is read in the calling function us-

11. Here, it is assumed that literal values in the program’s source
code are untainted.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 8

Str ::= · · · (string literals)
Num ::= · · · (numeric literals)
Bool ::= true | false
Obj ::= “{” Id “:” Exp, · · ·, Id “:” Exp “}” (object literals)
Fun ::= function Id “(” Id, · · ·, Id “)” “{” Stmt ∗ “}” (functions)
uop ::= · · · (unary operators)
bop ::= · · · (binary operators)
Val ::= Str |Num | Bool | undefined | null (values)

Exp ::= Val | (literal expression)
Obj | (object literal)
Fun | (function expression)
Str | (variable read)
Id “[” Exp “]” | (property read)
uop Exp | (unary expression)
Exp bop Exp (binary expression)

Stmt ::= var Id “=” Exp | (variable declaration)
Fun | (function declaration)
Id “=” Exp | (assignment)
Id “[” Id “]” “=” Exp | (property write)
Exp “(” Exp, · · ·, Exp “)” | (function call)
return Exp | (function return)
Stmt “;” Stmt (sequencing)

Fig. 7. Syntax for a core subset of JavaScript.

TVAL ::= {· · ·} | false (sets of source locations)
VNAME ::= Id (variable names)
PNAME ::= Id (property names)
OID ::= Id (object identifiers)

Ins::=
push(TVAL) | (push constant onto stack) (Inspush)
pop | (pop stack and ignore value) (Inspop)
unaryop(uop) (pop stack, apply unary operator, push result) (Insunaryop)
binaryop(bop) | (pop top two elements, apply binary operator, push result) (Insbinaryop)
initvar(VNAME) | (pop stack, initialize variable with popped value) (Insinitvar)
readvar(VNAME) | (push current value of variable) (Insreadvar)
writevar(VNAME) | (write value at top of stack into variable) (Inswritevar)
setvar(VNAME, TVAL) | (store value into variable) (Inssetvar)
initproperty(OID, PNAME) | (pop stack and initialize object property with popped value) (Insinitprop)
readproperty(OID, PNAME) | (push value of object property) (Insreadprop)
writeproperty(OID, PNAME) | (write value at top of stack into object property) (Inswriteprop)
deleteop(OID, PNAME) | (pop stack, delete value of object property, push result) (Insdeleteop)

Fig. 8. Abstract machine instructions.

ing a readvar instruction that is emitted when the function
call returns.

3.3 Other JavaScript features.

While Table 1 only covers a small subset of JavaScript,
our implementation covers the ECMAScript 5 language,
except for some minor limitations imposed by the Jalangi
framework (e.g., Jalangi does not currently support strict
mode at the file level). We briefly discuss how some key
features are handled:
arrays. In JavaScript, object and arrays behave almost

identically. Accordingly, our abstract machine does not
distinguish between array and object access and han-
dles them in a uniform manner using a single set of
instructions. In each case, we rely on the fact that we

can precisely identify the array index or object property
being accessed at run time, and generate property access
instructions accordingly. Property and array accesses us-
ing the . and the [· · ·] operators are handled identically.

getters and setters. Getters and setters (specified using
get/set syntax in JavaScript) enable programmers to
bind an object property to a function so that the function
will be invoked when that property is looked up or
assigned a value. Instead of treating such accesses as a
regular property read/write, we model them as function
invocation where the base object, arguments, and return
value of the invocation are modeled in accordance with
the semantics of the operation.

apply and call. These frequently-used native methods
allow programmers to explicitly set the this value for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 9

program construct generated instructions justification
literal expression l ∈ Val push (false) literals in the code are never tainted

object literal o ≡ { p1 : e1, · · ·, pn : en }

initproperty (oid(o), pn)
· · ·
initproperty (oid(o), p1)
push (false)

initialize properties from previously
pushed values; the object literal itself is
untainted

function expression f ∈ Fun push (false) functions are never tainted

variable read v ∈ Str readvar (v) push taint value for v

property read v[w] ∈ Exp readproperty (oid(v), offset(w)) read property in object oid bound to v

unary expression uop e ∈ Exp unaryop (uop) apply unary operator to top of stack

binary expression e1bop e2 ∈ Exp binaryop (bop) apply binary operator to 2 topmost ele-
ments of stack

declaration var v = e initvar (v) initialize variable

implicit declaration of this push (false) objects are never tainted

function declaration f push (false) functions are never tainted

function parameter f(· · · ,v, · · ·) initvar (v) initialize function parameter

assignment v = e writevar (v) update taint for variable v

property write v[w] = e writeproperty (oid(v), offset(w)) write property in object bound to v

function call e(e1, · · · , en)
pop ()
readVar (’_ret_’)

read special _ret_ variable for com-
municating the taint associated with the
return value

return e writeVar (’_ret_’)
use special _ret_ variable for commu-
nicating the taint associated with the
return value

TABLE 1
Rules for generating Abstract Machine instructions. Here, it is assumed that instructions have already been generated for shaded syntax

fragments.

a target function invocation. Calls to these methods are
handled as an invocation to the target function where the
modeling of this, arguments and return value reflects
the actual semantics.

eval. We treat eval as a sink in our analysis. However,
our analysis is able to report all taint flows across the
program, not just the first taint flow that reaches any
sink. Therefore, our analysis also needs to track any
taint flow in the code generated by the eval. The eval

construct is treated as the execution of an additional
script where code inside eval is instrumented normally.

exceptions. The data flow of exception objects in try,
catch, and finally constructs is handled similarly as
function return values, using a special variable _throw_.
In particular, an instruction writevar(’_throw_’) is is-
sued when a throw statement is encountered, and in-
structions readvar(’_throw_’);initvar(v) are gener-
ated when an exception handler catch(v) is executed.

arguments. Within each JavaScript function, arguments, a
special array-like object, is available as a local variable
that corresponds to the arguments passed to that func-
tion. A function’s argument can therefore be accessed
either by its name or by its index into the arguments

array. Our analysis models each argument access as an
access of the arguments object in order to have a uniform
representation of arguments in the abstract machine.

arguments in function calls. In JavaScript, functions may
be invoked with more or fewer arguments than they
are declared with. Missing arguments are bound to the
untainted value undefined and are accounted for in the
taint analysis for by pushing dummy taint values. Extra
arguments can be accessed via the arguments array and
their taint is modeled as discussed above.

asynchronous callbacks. Asynchronous callbacks are fre-
quently used in JavaScript, e.g., for I/O, event handling
and timers. Several functions native to JavaScript (e.g.,
setTimeout) and Node.js (e.g., writeFile) define one of
their parameters as an asynchronous callback. To handle
this, a mapping is maintained between native functions
and the functions that they call back asynchronously.
This mapping is used to emit the appropriate instruc-
tions before and after the callback’s execution.

for..in loops. In JavaScript, a loop of the form for v in

o construct enables one to iterate through properties
in an object o, where the loop variable v assumes the
name of the next enumerable property in each itera-
tion. Assuming that object o has properties with names
p1, · · · , pn, we model this by emitting instructions of the
form readproperty(o, pi);writevar(v) at the beginning
of each iteration of the loop (for 0 ≤ i ≤ n).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 10

4 IMPLEMENTATION

We implemented the technique in a tool called Ichnaea,
on top of Jalangi12, a popular instrumentation framework
for JavaScript. Ichnaea relies on Jalangi to attach hooks
at various points during program execution and generate
instructions for the abstract machine in accordance with
the rules in Table 1. Jalangi’s support for shadow memory
enables us to associate object identifiers (e.g., obj11 in Fig-
ure 2) with objects and arrays, and to properly account for
different instances of a program variable in different scopes
(e.g., frame3 in Figure 2). Our analysis is implemented in
about 4.5 KLOC of JavaScript code. The abstract machine
is implemented as a domain-specific language (DSL) that is
embedded in JavaScript, thus allowing the instructions to be
executed by any JavaScript engine. It comprises 321 lines of
JavaScript code.

We created models for approximately 90 native functions
that are referenced in the NPM modules used in our eval-
uation (see Section 5) and/or in the personal-watchface ap-
plication discussed in Section 2. This includes functions on
arrays, strings, functions, and objects as well as some native
functions from the Tizen runtime. A considerable number
of these are higher-order functions that take callbacks.13

Since our models for native functions are based on the
ECMAScript 5 specification [14], the platform-independence
of our approach is not compromised provided that the
actual implementations of these functions also match their
specification.

In general, a native model for a native function f that
takes a callback function g as an argument consists of the
following four components:

- pre: Abstract machine instructions that are emitted
immediately after a call to f ,

- post: Abstract machine instructions that are emitted
upon return from a call to f ,

- callbackpre: Abstract machine instructions that are
emitted just before g is entered, and

- callbackpost: Abstract machine instructions that are
emitted when g is exited.

For many native functions, the full generality of this ap-
proach is not required and one or more components can be
omitted. Furthermore, note that these models only reflect
the native function’s impact on propagating taint, and con-
structing such a “taint model” is generally much less work
than creating a model that accurately reflects the function’s
execution semantics.

As an example, Figure 9 shows the model for
Array.prototype. reduce. For this model, the pre compo-
nent initializes a special variable _accum_ that is used to
store the taint associated with intermediate results. De-
pending on whether the function is invoked with one or
two arguments, the accumulator is initialized with either
the taint associated with the supplied initial value, or with
the taint associated with the first array element. The post

12. We use Jalangi2 (see https://github.com/Samsung/jalangi2),
which, similar to Jalangi1, supports shadow memory.

13. In principle, a native function may invoke multiple callback
functions. Our implementation currently only supports the case where
a single callback function is used since we have not observed cases
involving multiple callback functions.

99 var arrayReduce = {
100 functionName: ”Array.prototype.reduce”,
101 pre: function (name, arrayOID, length, args){
102 var model = ”pop();”;
103 if (args.length === 1){
104 model += ”pop(); push(false); push(false);”
105 + ”readProperty(\’” + arrayOID + ”\’, \’0\’);”
106 + ”initVar(’_accum_’);”;
107 } else if (args.length === 2){
108 model += ”initVar(’_accum_’); pop();”;
109 }
110 return model;
111 },
112 post: function (base, args, result){
113 return ”readVar(’_accum_’); writeVar(’_ret_’); pop();”;
114 },
115 callbackpre: function(args) {
116 var total = args[0], value = args[1],
117 index = args[2], arrayObj = args[3];
118 var arrayOID = shadowMemory.getObjectID(arrayObj);
119 return ”readVar(’_accum_’); push(false); push(false);”
120 + ”readProperty(\’” + arrayOID + ”\’, \’”+ index + ”\’);”
121 + ”push(false); push(false); push(false);”;
122 },
123 callbackpost: function() {
124 return ”readVar(’_ret_’); writeVar(’_accum_’); pop();”;
125 }
126 };

Fig. 9. Native model for Array.prototype.reduce.

component loads the final value of _accum_ and writes it to
ret, to make it available to the caller. The callbackpre

component of the model reads the taint values associated
with the accumulator and with the array element currently
being visited and adjusts the stack to account for index
value, array object, and receiver. Lastly, the callbackpost

model reads _ret_, containing the value being returned by
the callback function, and writes it to _accum_.

We modeled DOM APIs to track propagation of taint
values across the DOM structure by intercepting each call to
a DOM API function, and modeling its effect on a shadow
representation. This enables us to capture the taint values
that are stored in DOM nodes and retrieved later in the
program execution. We rely on a similar abstraction to
model the Tizen APIs.

5 EVALUATION

In order to evaluate the practicality of our technique, we
aim to answer the following research questions:
RQ1: Is Ichnaea capable of detecting flows of tainted

data that correspond to security vulnerabilities in real
JavaScript software?

RQ2: What is the run-time overhead of Ichnaea?

RQ3: How large are generated sequences of instructions,
and how much time is needed to execute them?
The first research question aims to determine whether

Ichnaea is an effective tool for detecting data flows from
sources where tainted data enters an application to sinks
where sensitive operations are performed. The second re-
search question aims to determine by how much execution
speed is slowed down due to the instrumentation added by
Ichnaea. The third research question aims to determine how

https://github.com/Samsung/jalangi2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 11

much space is required by the generated instructions, and
how much time is required to execute them.

5.1 Experimental Methodology
As mentioned, the primary use case that we envision for
our technique is a situation where a JavaScript application
depends on third-party modules or libraries that use func-
tions such as eval or exec. In such cases, as was illustrated
in Section 2, injection vulnerabilities may exist that could be
very difficult to detect through manual code examination.
We now discuss key aspects of the experimental methodol-
ogy.

Selecting subject applications. Since we are interested
in evaluating our technique on real software, we decided to
apply Ichnaea to 22 modules from the Node Package Man-
ager (NPM)14, which provides 250,000+ JavaScript packages
for the Node.js platform that implement a wide range of
functionalities including server-side I/O, Internet of Things,
mobile applications, to give just a few examples. It is well-
known that NPM modules may suffer from various types of
security vulnerabilities, as is evident, e.g., from a large num-
ber of advisories on www.nodesecurity.io. Unlike browser-
based JavaScript applications that execute in a sandbox,
Node.js applications have full access to the underlying file
system and operating system. Therefore, command-injection
vulnerabilities may cause serious harm in Node.js applica-
tions.

Recently, Staicu et al. [2] presented a static analysis
and associated runtime monitoring technique for detecting
and securing calls to eval and exec that may be subject
to injection vulnerabilities. They conducted a large-scale
study of NPM modules in which they detect previously
undetected injection vulnerabilities. In our experiments, we
apply Ichnaea to a subset of the NPM modules in which
they report injection vulnerabilities15, as well as to some
additional NPM modules that we identified by analyzing
recent advisories on www.nodesecurity.io. Furthermore, we
manually explored GitHub repositories and identified a
number of additional NPM modules that invoke functions
such as exec, execSync, and execFileSync. Here, we delib-
erately included some modules in which it is impossible
for tainted input values to flow to these functions so that
we could confirm that Ichnaea does not spuriously report
tainted flows in such cases.

Constructing test drivers. For each module under con-
sideration, we created a small test driver that invokes the
module in a way that triggers the execution of a “sink”
function. For modules with real vulnerabilities, we created
the test in such a way that the vulnerability was triggered.
We then determined whether Ichnaea reports any flow of
tainted data from the input value to the operation in the
module where the injection takes place. These test drivers
consist of a call to a function specified in the API of the
NPM module in which a “payload” (e.g., a string value

14. See https://www.npmjs.com/.
15. Of the subject applications considered by Staicu et al., we

exclude the ones that involve data flow via the network or file system.
Furthermore, of the 15 modules they consider that do not involve data
flow via the network or file system, we exclude two applications that
do not run on a Mac, and one that exposed a bug in Jalangi for which
we are awaiting a fix.

containing an embedded “touch” command) is passed as an
argument to the function. For each test, we check whether
the payload is executed (e.g., by checking the timestamp
on the touch ed file), and check that taint flows are only
reported in cases where the injected command reaches the
call to eval or exec. The ‘libnotify’, ‘chook-growl-reporter’,
and ‘office-converter’ subjects required the creation of shell
commands that are not available on the Mac platform where
we conducted our experiments.

Constructing taint specifications. For each module un-
der consideration, we created a taint specification in which
any string constant occurring in the test driver is a source,
and that any call to eval, exec, execSync, and execFileSync

anywhere in the application is a sink. In other words, no
detailed knowledge of the subject application code was
required.

5.2 Subject Programs
Table 2 states the characteristics of the 22 NPM modules
that we use to evaluate our technique, and that exhibit
injection vulnerabilities using a variety of different “sink”
functions. The modules also exhibit a range of different
programming styles, and are of varying sizes. Furthermore,
in the aggregate, these modules make use of a considerable
number of native functions involving arrays, strings, objects,
and functions. The number of lines of code reported in the
column labeled ‘LOC’ includes lines with comments and
whitespace and includes code in modules imported using
the require function. The column labeled ‘files’ counts the
number of JavaScript source files. The column labeled ‘type’
indicates whether the injection vulnerability was due to the
use of eval, exec, execSync, or execFileSync, respectively,
and the last column shows where the vulnerability (if any
exists) was reported. Note that this includes four modules
in which we identified a previously unreported injection
vulnerability, and five modules where a “sink” function
is executed but where no vulnerability exists16. Several of
the modules that we found during our manual search on
GitHub relied on ECMAScript 6 features that are not yet
supported by Jalangi. We manually refactored these fea-
tures into equivalent ECMAScript 5 features, and the data
reported in Table 2 reflect the refactored code.

5.3 Experimental Results
We ran Ichnaea on each test case. For each module with a
vulnerability, we confirmed that it reported taint flows from
string literals created in the test to the location in the module
where the vulnerability was reported. For each module
without a vulnerability, we confirmed that Ichnaea reports
that only untainted data flows to sinks. Table 3 summarizes
our experimental results.

The first group of columns in the table show, from left
to right, the number of instructions executed in the original
test (measured in terms of the number of executed program
constructs in the subject program; a subset of these program
constructs was listed in Table 1), the number of instructions

16. In these cases, the argument passed to the sink function is con-
structed entirely of string literals that occur in the module’s source files.
In a few cases (e.g., system-locale and osenv) non-trivial concatenation
of strings literals that occur in the module’s files takes place).

www.nodesecurity.io
www.nodesecurity.io
https://www.npmjs.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 12

npm module description version LOC files type vulnerability

chook-growl-reporter growl reporter for the chook
unit test runner

0.0.1 1,515 21 exec [2]

cocos-utils utilities for developers of
cocos2d-html5 game engine 1.0.0 2,098 35 exec previously unreported

gm image processing for Node.js 1.20.0 3,539 24 exec
http://nodesecurity.io/
advisories/54

fish jQuery of filesystem for Node.js 0.0.0 73 4 exec [2]

git2json convert git log to json 0.0.1 247 12 exec [2]

growl growl support for Nodejs 1.9.2 356 4 exec
http://github.com/tj/
node-growl/issues/60

libnotify libnotify support for Node.js 1.0.3 97 3 exec
http://nodesecurity.io/
advisories/20

m-log rich-text logging support 0.0.1 1,184 21 eval
http://github.com/m-prj/
m-log/pull/1

mixin-pro simulate mixin-based inheri-
tance in JavaScript 0.6.6 480 5 eval

http://github.com/
floatinghotpot/mixin-pro/
issues/1

modulify generate nodejs modules from
source code

0.1.0-1 114,798 180 eval
http://github.com/
matthewkastor/modulify/
issues/2

mongo-parse parser for MongoDB queries 1.0.5 101,268 257 eval
http://github.com/
fresheneesz/mongo-parse/
issues/7

mongoosemask filter for Mongoose model at-
tributes

0.0.6 34,275 18 eval
http://github.com/
mccormicka/MongooseMask/
issues/1

mongoosify
Javascript library for converting
a JSON schema into a Mon-
goose schema

0.0.3 26,385 421 eval [2]

node-os-utils operating system utility library 1.0.7 1,120 14 exec previously unreported

node-wos determine which OS is being
used

0.2.3 557 6 execSync none

office-converter
convert office documents
into PDF/HTML by invoking
unoconv command

1.0.2 143 5 exec previously unreported

os-uptime get operating system’s uptime
as a date

2.0.1 129 6 execSync none

osenv look up OS-specific environ-
ment settings 0.1.5 206 6 exec none

pidusage fetch process cpu% and mem-
ory usage of a PID 1.1.4 525 7 exec

http://nodesecurity.io/
advisories/356

pomelo-monitor tool for monitoring OS and pro-
cess information

0.3.7 290 7 exec previously unreported

system-locale get locale from OS 0.1.0 65 3 execFileSync none

systeminformation system and OS information li-
brary 3.42.4 13,155 31 exec none

TABLE 2
NPM modules used for the evaluation of Ichnaea. The columns in the table show (from left to right): the name of the module, brief description of

the module’s functionality, version number, number of lines of source code (includes code in imported modules), number of files, type of
vulnerability (classified in terms of the function that serves as the sink), information where the vulnerability was first reported (here, ‘previously

unreported’ indicates that the vulnerability was not previously reported elsewhere, and ‘none’ indicates that no vulnerability exists).

http://nodesecurity.io/advisories/54
http://nodesecurity.io/advisories/54
http://github.com/tj/node-growl/issues/60
http://github.com/tj/node-growl/issues/60
http://nodesecurity.io/advisories/20
http://nodesecurity.io/advisories/20
http://github.com/m-prj/m-log/pull/1
http://github.com/m-prj/m-log/pull/1
http://github.com/floatinghotpot/mixin-pro/issues/1
http://github.com/floatinghotpot/mixin-pro/issues/1
http://github.com/floatinghotpot/mixin-pro/issues/1
http://github.com/matthewkastor/modulify/issues/2
http://github.com/matthewkastor/modulify/issues/2
http://github.com/matthewkastor/modulify/issues/2
http://github.com/fresheneesz/mongo-parse/issues/7
http://github.com/fresheneesz/mongo-parse/issues/7
http://github.com/fresheneesz/mongo-parse/issues/7
http://github.com/mccormicka/MongooseMask/issues/1
http://github.com/mccormicka/MongooseMask/issues/1
http://github.com/mccormicka/MongooseMask/issues/1
http://nodesecurity.io/advisories/356
http://nodesecurity.io/advisories/356

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 13

npm # # # gen. / time (s) time (s) overhead trace relative time (s)
module exectd. gen. # exectd. (orig) (Ichnaea) size trace size (taint)

instr. instr. instr. mean variance mean variance (KB) (B/instr) mean variance

chook-growl- 1340 1662 1.24 0.100 1.76e-05 0.670 5.82-04 6.70 56 42.79 0.236 2.76e-05
reporter
cocos-utils 536 778 1.45 0.102 1.64e-05 0.652 5.81e-05 6.39 32 61.13 0.084 6.62e-06
gm 2616 4269 1.63 0.109 2.1e-06 1.486 3.44e-04 13.62 124 48.54 0.096 8.71e-06
fish 143 163 1.14 0.098 7.88e-06 0.311 3.46e-05 3.17 16 114.57 0.079 1.22e-05
git2json 603 876 1.45 0.101 7.73e-06 0.488 5.32e-05 4.83 36 61.13 0.087 1.23e-05
growl 572 704 1.23 0.087 1.19e-05 0.448 4.09e-05 4.57 32 57.29 0.084 1.11e-05
libnotify 194 287 1.45 0.098 1.11e-05 0.327 2.78e-05 3.34 20 105.57 0.079 4.23e-06
m-log 7848 11426 1.46 0.092 1.43 e-05 1.169 2.63e-04 12.48 332 43.32 0.113 1.47e-05
mixin-pro 200 250 1.25 0.082 1.85 e-05 0.424 1.20e-05 5.14 20 102.4 0.10 6.54e-06
modulify 19664 23822 1.21 0.113 4.22e-05 3.331 1.3e-03 29.42 688 35.83 0.135 2.25e-05
mongo-parse 362 504 1.39 0.087 5.38 e-05 0.631 5.44 e-05 7.28 28 79.20 0.082 2.22e-06
mongoosemask 20487 25031 1.22 0.094 5.34e-06 1.972 3.58e-04 21.04 720 35.99 0.137 1.71e-05
mongoosify 72296 79353 1.10 0.110 1.65e-05 4.230 2.67e-03 38.42 2355 33.36 0.258 7.54e-05
node-os-utils 722 919 1.27 0.102 1.03e-05 0.836 7.99e-05 8.19 36 51.06 0.085 1.20e-05
node-wos 756 952 1.26 0.094 8.01e-06 0.435 4.16e-05 4.65 36 48.76 0.085 8.04e-06
office-converter 174 184 1.06 0.096 1.34e-04 0.34 6.68e-06 3.53 16 94.16 0.084 1.26e-05
os-uptime 145 162 1.12 0.095 9.96e-06 0.323 3.03e-05 3.4 16 112.99 0.083 8.54e-06
osenv 482 554 1.15 0.098 8.99e-06 0.457 3.32e-05 4.66 28 59.46 0.084 3.29e-06
pidusage 462 619 1.34 0.096 5.78e-06 0.528 2.78e-05 5.44 28 62.06 0.125 1.00e-05
pomelo-monitor 377 434 1.15 0.123 7.79e-06 0.507 1.08e-04 4.13 24 65.19 0.085 2.0e-05
system-locale 175 203 1.16 0.096 6.9e-06 0.339 4.57e-05 3.54 16 93.62 0.082 6.18e-06
systeminformation 9514 10726 1.13 0.124 1.65e-05 3.128 1.78e-03 25.24 284 30.57 0.108 2.49e-05

TABLE 3
Experimental results.

generated for the abstract machine, and the ratio between
the number of generated instructions and the number of
executed instructions. The second group of columns in the
table show the mean running time (and variance) of the
original test, the mean running time (and variance) with
Ichnaea’s instrumentation, and the runtime overhead, (mea-
sured as a slowdown factor obtained by dividing the latter
by the former). The column labeled ‘trace size’ shows the
size of the generated executable trace, which includes both
the generated instructions and the abstract machine itself.
The column labeled ’relative trace size’ shows the trace
size relative to the number of instructions executed in the
original test. The last column, labeled ‘time (taint)’ shows
the time required for executing the generated trace.

All results were computed on an Apple MacBook Pro
with a 2.5 GHz Intel Core i7 processor with 16 GB 1600
MHz DDR3 RAM, running MacOS High Sierra 10.13. We
used Node.js version v4.8.4. All reported running times are
averages over 10 executions.

Based on the results in Table 3, we are now in a position
to answer the research questions:
RQ1: Ichnaea is capable of detecting taint flows correspond-

ing to real security vulnerabilities in NPM modules that
cover a considerable range of programming styles and
native functions. We manually investigated the taint
flows reported by Ichnaea and confirmed each reported
flow of tainted data from a source to a sink. We also
confirmed that, on the modules without vulnerabilities,
Ichnaea reports only untainted data to flow to a sink. In
other words, there were no false positives, as could be
expected from a precise dynamic analysis. In general,
a dynamic analysis like Ichnaea’s may suffer from false
negatives if some control-flow paths are not executed.
However, we confirmed through manual investigation
that no flows of tainted data from sources to sinks went
unreported in the executions that we considered.

RQ2: On the NPM modules under consideration, the use

of Ichnaea slows down execution time by a factor ranging
from 3.17x to 38.42x (9.96x on average).

RQ3: On the NPM modules under consideration, the ratio
between the number of generated instructions and the
number of executed instructions lies within a small range
between 1.06 and 1.63. The generated executable trace
files range between 16KB and 2.3MB, the relative trace
sizes range from 30.57 bytes per instruction to 112.99
bytes per instruction, and executing these trace files to
produce a report on tainted flows requires less than 0.3
seconds in all cases.

5.4 Threats to Validity

We are aware of several threats to validity.
Selection of experimental subjects. The NPM modules

used in our evaluation may not be a representative of
code running on the Node.js platform, or of JavaScript
software more generally. Similarly, the flow of taint from
values passed into the module to the place where the
injection takes place may not be reflective of injection
vulnerabilities in general. We have attempted to ad-
dress this concern by analyzing all NPM modules with
such vulnerabilities that we could find and run with
our infrastructure, and that did not involve significant
additional effort (e.g., modules that require additional
software to be installed on a server).

Short execution times. The execution times for our test
drivers for the NPM modules under consideration are
quite short. This may distort the observed runtime over-
heads (e.g., because of JIT warmup time). We have at-
tempted to address this concern by reporting the average
running time of 10 executions and by reporting the
variance in the running times that we observed.

Hand-crafted models for native functions. The models
created for native functions were constructed manually

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 14

following a careful review of the specification. It is pos-
sible for our models to contain errors, or for the imple-
mentation of native functions on some platforms to vary
from the officially specified behavior. Such errors could
cause false positives and false negatives in the results,
in principle. To minimize this risk, our implementation
is accompanied by an extensive test suite that covers all
native functions used in our experimental subjects.

Potential for missing taint reports. As with any dynamic
analysis, the issues reported by Ichnaea are limited to
code that is executed. Additional issues might occur in
code that is not executed, so it is important to develop a
comprehensive test suite. In particular, Ichnaea may fail
to report issues if a test suite fails to cover sources, if it
fails to cover sinks, or if it fails to exercise paths from
sources to sinks. To gain confidence that there are no
false negatives, developers can inspect the code, locate
where sources and sinks occur, and ensure that the test
suite covers all execution paths from these sources to
these sinks.

6 RELATED WORK

There has been a long history of research on information
flow analysis going back to the 1970s [15]. Broadly speaking,
previous research can be classified as static techniques (see,
e.g., [16], [17], [18], [19]) dynamic techniques (see, e.g., [20],
[5], [21]), or hybrid static/dynamic techniques (see, e.g.,
[22], [6], [23]). Below, we focus on dynamic and hybrid
information flow analyses for JavaScript.

Austin and Flanagan [4] present an information flow
analysis for λinfo, a variant of the untyped λ-calculus, in
which values are labeled with information flow labels that
are ordered in a lattice, and evaluation rules of a standard
big-step operational semantics manipulate these labels as
program execution proceeds. The approach relies on the
no-sensitive-upgrade check [24] to correctly handle implicit
flows without explicitly reasoning about the behavior of
branches that are not executed. Later work [25] extended
the approach to Featherweight JavaScript, a small language
with objects, arrays and dynamic prototype chains. Austin
and Flanagan [26] also propose a more permissive approach
in which an additional security label represents partially
leaked data. Such labels are introduced when variables are
assigned in branches controlled by private information, and
execution can proceed until a value with such a label is used
in a conditional branch.

Hedin and Sabelfeld [27] present a dynamic information-
flow analysis for a core subset of JavaScript, including
higher-order functions and objects. The approach handles
both explicit and implicit flows and takes the form of a big-
step operational semantics in which values have associated
security labels. Later, Hedin et al. [28] extended the work
to the full non-strict ECMAScript 5 language in the context
of JSFlow, a specialized JavaScript interpreter, which itself
is implemented in JavaScript, and Snowfox, a Firefox exten-
sion that uses JSFlow as the execution engine for web pages.
Similar to our work, Hedin et al. rely on models for native
functions, and observe that “deep” models must be defined
for methods defined on arrays. However, they do not dis-
cuss in detail how their models are defined (e.g., how taint is

propagated from the array itself to the arguments and return
values of callback functions passed to the methods). Hedin
et al. report that JSFlow is two orders of magnitude slower
than a fully JITed JavaScript engine. Currently, JSFlow does
not run on the Node.js applications that we consider due the
absence of models for Node.js native functions. Later work
by Hedin et al. [29] and Sjösten et al. [30] is concerned with
developing concise models for tracking information flow in
libraries, focusing on a small functional language in each
case.

Several dynamic approaches rely on modification of a
browser. Kerschbaumer et al. [7] present CrowdFlow, a
specialized browser built on top of WebKit that associates
different taint labels with data originating from different
domains. Potential information-flow violations are reported
when values originating from different domains are used in
HTTP requests. CrowdFlow distributes the tracking of infor-
mation flows (and the associated run-time overhead) over a
crowd of users. Dhawan and Ganapathy [31] implement a
dynamic information flow analysis for browser extensions
in the Firefox browser. Their approach tracks both explicit
and implicit flows, but is unable to reason about code in
branches that are not executed.

Jang et al. [32] present a dynamic information flow
analysis for JavaScript that was implemented in the Chrome
browser by rewriting abstract syntax trees. The AST rewrit-
ing involves boxing and unboxing objects, which is not
required by our technique. Jang et al. report on a large-
scale empirical study that demonstrates the existence of
privacy-violating flows reflecting information about users’
browsing behavior in several popular sites. Jang et al. did
not implement taint tracking for native methods such as
Array.prototype.join, causing false negatives in their anal-
ysis. At the time of writing this paper, their tool was no
longer available.

Kannan et al. [33] propose virtual values, which extend
JavaScript proxies with support for primitive values. They
argue that, using virtual values, dynamic information flow
analyses can be implemented without modification of a
JavaScript engine. However, in the absence of support for
this feature, the Sweet.js macro system [34] is used to
introduce proxies where primitive values are used.

Saoji et al. [35] present a dynamic taint analysis for
JavaScript that is precise in the sense that taint is tracked at
the level of individual characters in strings. An API is pro-
vided to programmers for tainting, untainting, and checking
the taintedness of character regions within strings. The tech-
nique has been implemented by modifying Mozilla’s Rhino
JavaScript engine, and Saoji et al. present performance ex-
periments on small benchmarks from the SunSpider suite,
showing a modest increase in overhead compared to coarse-
level taint tracking.

Several information flow analyses that are implemented
using browser modification rely on local static analysis to
reason about implicit flows. Vogt et al. [36] implement one
such analysis in the context of Firefox, by extending the
semantics of bytecode instructions to propagate taint. In this
work, a simple intraprocedural static analysis is used to con-
servatively overapproximate indirect control dependences
that occur in branches that were not executed. Additional
approximations serve to track indirect flows (e.g., writing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 15

a tainted element to an array causes the entire array to
be tainted to ensure that methods such as length return a
tainted value). Just et al. [6] and Bichhawat et al. [37] report
on similar information flow analyses for JavaScript that are
implemented in WebKit and that also use static analysis to
reason about implicit flows.

Chudnov and Naumann [38] and Santos and Rezk [39]
present approaches that, like ours, rely on shadow memory
representations of variables and objects to keep track of
taint. However, both of these works only consider small
idealized subsets of JavaScript and do not report on concrete
tools or experiments, or on the pragmatics of dealing with
native code. In later work, Chudnov and Naumann [8]
present a platform-independent information flow analysis
that performs a whole-program transformation to wrap
primitive values in “boxes” in which security labels are
stored. Operations are rewritten to box and unbox values
as needed and calls to API functions are re-routed through
API facades. These transformations become quite complex
and involve introduction of the with construct, and con-
solidation of all JavaScript code into a single file. The use
of eval requires run-time instrumentation and is currently
handled using an HTTP proxy server. While Chudhov and
Naumann discuss some of the challenges associated with
native method calls, they do not discuss the handling of
higher-order functions such as Array.prototype.reduce for
which taint tracking requires careful modeling of callbacks.
They implemented their analysis in a tool called JEST and
report on case studies involving security-related issues in
mashup applications that they manually constructed and
on performance experiments involving benchmarks from
the SunSpider and Kraken suites for which they report
running times 101 to 364 times slower than the original code.
Applying Chudnov and Naumann’s tool to the Node.js
applications that we consider would require the creation
of API facades for all APIs used in these applications, and
would involve significant effort.

Chugh et al [22] present a staged information-flow anal-
ysis for a subset of JavaScript in which a static analysis
constructs a set of constraints for tracking direct and in-
direct information flows. Then, a residual policy is inferred
by solving these constraints and enforced by way of run-
time checks. The paper mentions an implementation of the
approach as an extension for the Firefox browser, but this
appears to be no longer available.

Wei and Ryder [23] gather dynamic execution informa-
tion from a set of executed tests using TracingSafari, an
instrumented version of WebKit. From this, a program is
constructed that represents the observed calling structure
and that is free from dynamic features such as eval. A static
taint analysis is then applied to this program. At the time
of writing this paper, Wei and Ryder’s tool is no longer
available.

With the notable exception of [8], all of the works
discussed above that support the full JavaScript language
involve the construction of a specialized interpreter, mod-
ification of a browser or JavaScript engine, or addition
of nontrivial new features to JavaScript. Our technique
is platform-independent, does not require complex code
transformations, and has been applied successfully to detect
known vulnerabilities in modules for the Node.js platform.

7 CONCLUSIONS AND FUTURE WORK

We presented a platform-independent dynamic taint anal-
ysis for JavaScript. Our technique instruments a JavaScript
application so that, as a side effect of program execution,
instructions for an abstract machine are emitted. Executing
these instructions produces a report on observed taint flows
in the application. Our approach has two key advantages:
(i) it is platform-independent and can be used with any
JavaScript engine, and (ii) it is capable of tracking taint
on primitive values without requiring boxing. Furthermore,
higher-order native functions can be accommodated using
models, it enables various deployment scenarios (the gener-
ated instructions can be executed alongside normal program
execution, or they can be transmitted for offline execution),
and it handles situation where taint originates from indirect
sources.

We implemented the technique in a tool called Ichnaea,
consisting of approximately 4.5 KLOC of JavaScript code,
and demonstrated its practicality by using it to detect taint
flows corresponding to known injection vulnerabilities in
22 modules for Node.js. On these modules, we observed
run-time overheads ranging from 3.17x to 38.42x compared
to uninstrumented execution. We also demonstrated how
Ichnaea can be used to determine privacy leaks in Tizen apps
for the Samsung Gear S2 smartwatch.

While we have not explored the tracking of implicit
flow, we believe that its implementation would be largely
similar to that of tracking explicit flows. In its essence, our
technique relies on a shadow memory representation to
associate a taint value with each value stored in memory.
Whenever a JavaScript instruction reads/writes to memory,
we emit instructions that update the corresponding taint
values in shadow memory accordingly. Right now, we only
emit instructions that track taint flows that correspond to
data flow in the JavaScript code. To track implicit flows,
additional instructions would have to be emitted that have
the effect of tainting additional values in shadow memory
when the JavaScript code executes a branch that depends
on tainted data. Doing this would require emitting instruc-
tions that signify that a branch is entered or exited, which
could be accomplished by way of a small extension to the
instruction set for the abstract machine. Additional implicit
flows may arise in specialized settings (e.g., the value of the
length property of an array is implicitly modified by the
run-time system when the size of an array changes). Such
flows could be tracked by emitting additional instructions
to taint the length property whenever tainted values are
written to an array.

Other directions for future work include support for
flexible taint propagation policies that allow the user to
customize the taint propagation behavior of operators, and
support for user-specified sanitization functions that have
the effect of erasing taint from values they return.

REFERENCES

[1] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek.
The eval that men do - A large-scale study of the use of eval
in JavaScript applications. In ECOOP 2011 - Object-Oriented Pro-
gramming - 25th European Conference, Lancaster, UK, July 25-29, 2011
Proceedings, pages 52–78, 2011.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 16

[2] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits.
SYNODE: understanding and automatically preventing injection
attacks on NODE.JS. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.

[3] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos,
Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. You are what you include: large-
scale evaluation of remote JavaScript inclusions. In the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 736–747, 2012.

[4] Thomas H. Austin and Cormac Flanagan. Efficient purely-
dynamic information flow analysis. In Proceedings of the 2009
Workshop on Programming Languages and Analysis for Security, PLAS
2009, Dublin, Ireland, 15-21 June, 2009, pages 113–124, 2009.

[5] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. Taintdroid: An
information-flow tracking system for realtime privacy monitoring
on smartphones. In 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, pages 393–407, 2010.

[6] Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer.
Information flow analysis for JavaScript. In 1st ACM SIGPLAN
international workshop on Programming language and systems tech-
nologies for internet clients (PLASTIC’11), pages 9–18, 2011.

[7] Christoph Kerschbaumer, Eric Hannigan, Per Larsen, Stefan Brun-
thaler, and Michael Franz. CrowdFlow: Efficient information flow
security. In Proc. 16th Information Flow Security Conference, 2013.

[8] Andrey Chudnov and David A. Naumann. Inlined information
flow monitoring for JavaScript. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Den-
ver, CO, USA, October 12-6, 2015, pages 629–643, 2015.

[9] Angeliki Zavou, Georgios Portokalidis, and Angelos D.
Keromytis. Taint-exchange: A generic system for cross-process and
cross-host taint tracking. In Advances in Information and Computer
Security - 6th International Workshop, IWSEC 2011, Tokyo, Japan,
November 8-10, 2011. Proceedings, pages 113–128, 2011.

[10] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim M. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005, pages 190–
200, 2005.

[11] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon
Gibbs. Jalangi: a selective record-replay and dynamic analysis
framework for JavaScript. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, pages 488–498, 2013.

[12] HoJun Jaygarl, Cheng Luo, YoonSoo Kim, Eunyoung Choi, Kevin
Bradwick, and Jon Lansdell. Professional Tizen Application Develop-
ment. Wiley, 2014.

[13] Mike Cantelon, Marc Harter, T.J. Holowaychuk, and Nathan Ra-
jlich. Node.js in Action. Manning Publications, 2014.

[14] ECMAScript 5 Language Specification. http://www.
ecma-international.org/publications/files/ECMA-ST/Ecma-262.
pdf, 2011.

[15] Dorothy E. Denning and Peter J. Denning. Certification of pro-
grams for secure information flow. Commun. ACM, 20(7):504–513,
1977.

[16] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and
Omri Weisman. Taj: Effective taint analysis of web applications. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, pages 87–97, New
York, NY, USA, 2009. ACM.

[17] Yin Liu and Ana Milanova. Static information flow analysis with
handling of implicit flows and a study on effects of implicit flows
vs explicit flows. In 14th European Conference on Software Main-
tenance and Reengineering, CSMR 2010, 15-18 March 2010, Madrid,
Spain, pages 146–155, 2010.

[18] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby,
Stephen Teilhet, and Ryan Berg. Saving the world wide web
from vulnerable JavaScript. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto,
ON, Canada, July 17-21, 2011, pages 177–187, 2011.

[19] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. FlowDroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android
apps. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, page 29, 2014.

[20] James A. Clause, Wanchun Li, and Alessandro Orso. Dytan:
a generic dynamic taint analysis framework. In Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2007, London, UK, July 9-12, 2007, pages 196–206,
2007.

[21] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask).
In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, Berkeley/Oakland, California, USA, pages 317–331, 2010.

[22] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner.
Staged information flow for JavaScript. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages
50–62, 2009.

[23] Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis
for JavaScript. In International Symposium on Software Testing and
Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, pages
336–346, 2013.

[24] Stephan A. Zdancewic. Programming Languages for Information
Security. PhD thesis, Cornell University, 2002.

[25] Thomas H. Austin, Tim Disney, Cormac Flanagan, and Alan
Jeffrey. Dynamic information flow analysis for featherweight
JavaScript. Technical Report UCSC-SOE-11-19, University of Cali-
fornia at Santa Cruz, 2011.

[26] Thomas H. Austin and Cormac Flanagan. Permissive dynamic
information flow analysis. In Proceedings of the 2010 Workshop
on Programming Languages and Analysis for Security, PLAS 2010,
Toronto, ON, Canada, 10 June, 2010, page 3, 2010.

[27] Daniel Hedin and Andrei Sabelfeld. Information-flow security for
a core of JavaScript. In 25th IEEE Computer Security Foundations
Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, pages
3–18, 2012.

[28] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei
Sabelfeld. JSFlow: Tracking information flow in JavaScript and its
APIs. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 1663–1671, New York, NY, USA, 2014.
ACM.

[29] Daniel Hedin, Alexander Sjösten, Frank Piessens, and Andrei
Sabelfeld. A principled approach to tracking information flow
in the presence of libraries. In Principles of Security and Trust -
6th International Conference, POST 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 49–70, 2017.

[30] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. Informa-
tion flow tracking for side-effectful libraries. In Formal Techniques
for Distributed Objects, Components, and Systems - 38th IFIP WG 6.1
International Conference, FORTE 2018, Held as Part of the 13th In-
ternational Federated Conference on Distributed Computing Techniques,
DisCoTec 2018, Madrid, Spain, June 18-21, 2018, Proceedings, pages
141–160, 2018.

[31] Mohan Dhawan and Vinod Ganapathy. Analyzing information
flow in JavaScript-based browser extensions. In Twenty-Fifth
Annual Computer Security Applications Conference, ACSAC 2009,
Honolulu, Hawaii, 7-11 December 2009, pages 382–391, 2009.

[32] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
An empirical study of privacy-violating information flows in
JavaScript web applications. In Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010, pages 270–283, 2010.

[33] Prakasam Kannan, Thomas H. Austin, Mark Stamp, Tim Disney,
and Cormac Flanagan. Virtual values for taint and information
flow analysis. In Proceedings of the Workshop on Meta-Programming
Techniques and Reflection (Meta’16), 2016.

[34] Tim Disney, Nathan Faubion, David Herman, and Cormac Flana-
gan. Sweeten your JavaScript: hygienic macros for ES5. In DLS’14,
Proceedings of the 10th ACM Symposium on Dynamic Languages, part
of SLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 35–
44, 2014.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 17

[35] Tejas Saoji, Thomas H. Austin, and Cormac Flanagan. Using
precise taint tracking for auto-sanitization. In Proceedings of the
2017 Workshop on Programming Languages and Analysis for Security,
PLAS@CCS 2017, Dallas, TX, USA, October 30, 2017, pages 15–24,
2017.

[36] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda,
Christopher Krügel, and Giovanni Vigna. Cross site scripting
prevention with dynamic data tainting and static analysis. In Pro-
ceedings of the Network and Distributed System Security Symposium,
NDSS 2007, San Diego, California, USA, 28th February - 2nd March
2007, 2007.

[37] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Chris-
tian Hammer. Information flow control in WebKit’s JavaScript
bytecode. In Principles of Security and Trust - Third International
Conference, POST 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings, pages 159–178, 2014.

[38] Andrey Chudnov and David A. Naumann. Information flow
monitor inlining. In Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, July
17-19, 2010, pages 200–214, 2010.

[39] José Fragoso Santos and Tamara Rezk. An information flow
monitor-inlining compiler for securing a core of JavaScript. In
ICT Systems Security and Privacy Protection - 29th IFIP TC 11
International Conference, SEC 2014, Marrakech, Morocco, June 2-4,
2014. Proceedings, pages 278–292, 2014.

Rezwana Karim received a PhD degree from
Rutgers University in 2015. She is currently
a Senior Research Engineer at Samsung Re-
search America in Mountain View, CA. Her re-
search interest primarily lies in improving se-
curity and quality of software using techniques
from program analysis and software engineer-
ing. Previously she has worked on the domain of
UI technologies, network security and ubiquitous
computing.

Frank Tip received a PhD degree from the Uni-
versity of Amsterdam in 1995. He is currently
a Professor and Associate Dean for Graduate
Programs at the College of Computer and In-
formation Science at Northeastern University.
His research interests include program analy-
sis, refactoring, test generation, fault localization,
and automated program repair.

Alena Sochůrková received a Master’s degree
from the Czech Technical University in Prague
in 2016. She is currently an Android Malware
Analyst at Avast in Prague. Her interests include
computer security, cryptography and embedded
systems.

Koushik Sen received a PhD degree from the
University of Illinois at Urbana-Champaign in
2006. He is currently a Professor in the Depart-
ment of Electrical Engineering and Computer
Sciences at the University of California, Berke-
ley. His research interest lies in Software Engi-
neering, Programming Languages, and Formal
methods. He is interested in developing software
tools and methodologies that improve program-
mer productivity and software quality.

	Introduction
	Overview
	Approach
	Example Application
	Execution Behavior
	Abstract Machine
	Example: Generating Instructions
	Native Functions
	Indirect taint sources

	Taint Analysis
	Abstract Machine
	Generating Instructions
	Other JavaScript features.

	Implementation
	Evaluation
	Experimental Methodology
	Subject Programs
	Experimental Results
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Rezwana Karim
	Frank Tip
	Alena Sochurková
	Koushik Sen

