
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 1

A Study of Call Graph Construction
for JVM-Hosted Languages

Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondřej Lhoták, Julian Dolby, and Frank Tip

Abstract—Call graphs have many applications in software engineering, including bug-finding, security analysis, and code navigation in
IDEs. However, the construction of call graphs requires significant investment in program analysis infrastructure. An increasing number
of programming languages compile to the Java Virtual Machine (JVM), and program analysis frameworks such as WALA and SOOT
support a broad range of program analysis algorithms by analyzing JVM bytecode. This approach has been shown to work well when
applied to bytecode produced from Java code. In this paper, we show that it also works well for diverse other JVM-hosted languages:
dynamically-typed functional Scheme, statically-typed object-oriented Scala, and polymorphic functional OCaml. Effectively, we get call
graph construction for these languages for free, using existing analysis infrastructure for Java, with only minor challenges to
soundness. This, in turn, suggests that bytecode-based analysis could serve as an implementation vehicle for bug-finding, security
analysis, and IDE features for these languages. We present qualitative and quantitative analyses of the soundness and precision of call
graphs constructed from JVM bytecodes for these languages, and also for Groovy, Clojure, Python, and Ruby. However, we also show
that implementation details matter greatly. In particular, the JVM-hosted implementations of Groovy, Clojure, Python, and Ruby produce
very unsound call graphs, due to the pervasive use of reflection, invokedynamic instructions, and run-time code generation.
Interestingly, the dynamic translation schemes employed by these languages, which result in unsound static call graphs, tend to be
correlated with poor performance at run time.

Index Terms—Call graphs, static analysis, JVM, compilation, Scheme, Scala, OCaml, Groovy, Clojure, Python, Ruby.

F

1 INTRODUCTION

THE Java Virtual Machine (JVM) was designed for
portable and efficient implementation of Java. By defin-

ing a relatively small set of bytecode instructions with clear
semantics, the task of creating an interpreter or just-in-
time compiler for Java is simplified significantly. In recent
years, the JVM has been used to implement programming
languages such as Clojure [1], Groovy [2], OCaml [3],
Python [4], Ruby [5], Scala [6], and Scheme [7]. By compiling
these languages to JVM bytecode, language implementors
significantly reduce the amount of work needed to imple-
ment their languages, and achieve portability across many
platforms.

Several frameworks, such as Chord [8], Doop [9],
Soot [10], Wala [11], and OPAL [12], have been developed to
support static analysis of JVM bytecode. These frameworks
support a broad range of algorithms for static pointer anal-
ysis, call graph construction, data-flow analysis, and others.
A JVM-based approach works well for Java because JVM
bytecode is fairly close to Java but avoids a lot of its syntactic
sugar. As a result, bytecode-based analysis frameworks are
widely used in academia and industry.

Together, these developments raise the tantalizing pos-

• K. Ali is with the Department of Computing Science, University of
Alberta. E-mail: karim.ali@ualberta.ca.

• X. Lai is with Google. E-mail: xlai@google.com.
• Z. Luo is with Microsoft. E-mail: zhaoyi.luo@microsoft.com.
• O. Lhoták is with the David R. Cheriton School of Computer Science,

University of Waterloo. E-mail: olhotak@uwaterloo.ca.
• J. Dolby is with IBM Research. E-mail: dolby@us.ibm.com.
• F. Tip is with the Khoury College of Computer Sciences, Northeastern

University. E-mail: f.tip@northeastern.edu.

Manuscript received XXX XX, 2016; revised XXX XX, 2017.

sibility that many languages could get program analysis
infrastructure for free by relying on analyzing generated
JVM bytecode. For this to work, however, JVM-bytecode-
based analysis has to produce good results, as it has
been shown to do for Java. Hence, this paper investigates
how well this JVM-bytecode-based approach works when
applied to bytecode produced from other languages. We
examine bytecodes generated from Scheme, Scala, OCaml,
Groovy, Clojure, Python, and Ruby programs. We show
that, while Scheme, Scala, and OCaml are a diverse set
of languages, the compilers for these languages produce
bytecode that by-and-large is amenable to analysis. How-
ever, implementation details matter greatly, and the other
languages have complex, reflection-heavy implementations
that inhibit good analysis.

Specifically, we focus on call graph construction because
call graphs enable many applications in software engineer-
ing, such as bug-finding (see e.g. [13]), detecting security
vulnerabilities (see e.g. [14]), IDE features such as code
navigation (see e.g., [15]), and application extraction and
optimization (see e.g. [16], [17]).

Our focus in this paper is on studying the following
three issues: (i) the soundness of static call graphs computed
from JVM bytecode (i.e., whether they contain all methods
and call edges that can arise during any execution), (ii) the
precision of the static call graphs (i.e., how many nodes and
edges they contain that cannot arise in any execution), and
(iii) the relationship between the quality of constructed call
graphs and the runtime performance of applications.

To evaluate soundness and precision, we conduct qual-
itative and quantitative experiments. In the qualitative ex-
periments, we inspect call graphs constructed by compiling

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 2

a small example to bytecode, and study the translation of
function and method calls. We look for uses of reflection,
dynamic code generation, and invokedynamic instructions
that challenge static analysis. In the quantitative experi-
ments, we use 10 programs from the Computer Language
Benchmark Game (CLBG) suite [18] with versions available
for each language. This enables us to study the different
programming languages in a uniform and consistent way.
After compiling these programs to JVM bytecode, a stan-
dard 0-CFA analysis [19] provided by WALA [11] is used
to construct static call graphs. Dynamic call graphs are
constructed using WALA’s instrumentation-based dynamic
call graph builder. Using ProBe, a call graph comparison
tool [20], we measure unsoundness by identifying nodes
and edges that occur in the dynamic call graph but not
the static one. Similarly, potential imprecision is reflected
by nodes and edges in the static call graphs but not the
dynamic ones. In such cases, we manually determine if the
static analysis is imprecise, or if the discrepancy is due to
low code coverage in the dynamic graph.

Since the CLBG programs are fairly small, we conducted,
for each of the languages under consideration1, additional
experiments on two larger subject programs. For these pro-
grams, we performed the same quantitative experiments as
for the CLBG programs. Moreover, in a detailed qualitative
assessment, we determined whether additional issues arose
in these larger programs that comprise soundness or preci-
sion.

We observe that call graphs constructed for Groovy, Clo-
jure, Python, and Ruby using bytecode-based static analysis
are unsound, due to pervasive use of reflection, dynamic
code generation, and invokedynamic instructions. Even if
these challenges were overcome, the constructed call graphs
would remain highly imprecise due to the ways in which
function calls are translated. On the other hand, sound
call graphs are constructed for Kawa’s implementation of
Scheme, showing that dynamically-typed languages do not
necessitate reflective, hard-to-analyze implementations. For
statically-typed Scala and polymorphic OCaml, the use of
reflection and proxies can cause unsoundness, just as in
Java, but this occurs rarely in practice and similar solutions
would apply [21]. Unsoundness of this kind is hard to avoid
in practice [22], and reflects the state of the art. Bytecode-
based analyses of these languages are as sound as for Java.

We observe that the call graphs constructed for Kawa
programs are generally precise for direct calls, but some
precision is lost with heavy use of lambda expressions.
In Scala, precision suffers because type information is lost
when compiling features such as closures. This is no differ-
ent from the issues that lambda expressions face in Java 8,
and can be addressed by standard forms of context sensi-
tivity. The OCaml compiler implements closures using the
JVM’s MethodHandles, which WALA analyzes soundly and
precisely.

For the performance experiments, we compiled the same
10 CLBG programs in each language and compared running
times and memory consumption on a standard JVM. Inter-
estingly, other than for Java, the lowest running times and

1. Except in the case of Ruby, because the JRuby ahead-of-time build
system is unable to handle the larger programs.

memory consumption are measured for Scheme, Scala, and
OCaml (i.e., the languages for which the constructed call
graphs are the most sound). This suggests that the same
translation schemes that hamper static analysis also cause
performance bottlenecks.

Overall, we conclude that JVM-bytecode-based analysis
is practical for a wide range of languages—with static,
polymorphic and dynamic types, and with object-oriented
and functional styles—but it requires careful implementa-
tion that avoids reflective features of Java as a substitute
for compilation. This suggests that bytecode-based analysis
could serve as a useful implementation vehicle for solving
many problems in software engineering for languages for
which alternative program analysis infrastructure is not
readily available.

In summary, the contributions of this paper are as fol-
lows:

• We study soundness and precision of call graphs con-
structed from JVM bytecode produced from Scheme,
Scala, OCaml, Groovy, Clojure, Python, and Ruby pro-
grams. To our knowledge, this is the first comparative
study of static analysis for JVM-hosted languages.

• We show that for Kawa, Scala and OCaml, constructed
call graphs are as sound as for Java, compromised only
by reflection and proxies in rare cases. Precision also
faces only issues similar to Java.

• We found that, for the languages Groovy, Clojure,
Python, and Ruby, the constructed call graphs are
highly unsound and imprecise. This is due to imple-
mentations that use reflection pervasively. Use of the
new invokedynamic bytecode in some of these imple-
mentations leads to similarly poor results.

• Our performance experiments show that dynamic
translation schemes that cause loss of soundness in
static analysis are correlated with poor performance at
run time.

The remainder of this paper is organized as follows.
Section 2 provides some detail about MethodHandles and
the invokedynamic JVM instruction. Section 3 reviews our
experimental setup. Next, Sections 4–10 are concerned with
an analysis of the soundness and precision of call graphs
computed for each of the languages under consideration
(Scheme, Scala, OCaml, Groovy, Clojure, Python, and Ruby,
respectively). Section 11 reports on a study in which the
performance of these language implementations is corre-
lated with the observed soundness and precision results.
In Section 12, some observations made during our studies
are discussed, along with threats to validity. Related work
is discussed in Section 13. Finally, conclusions are presented
in Section 14.

2 BACKGROUND

We briefly review MethodHandles and invokedynamic in-
structions, two features that were added to the JVM in
Java 7 in order to facilitate the implementation of dynamic
languages and that are already being used by several of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 3

language implementations studied in this paper.2 Since the
static analysis community has not paid significant attention
to these features until now, we briefly review the challenges
they pose for static analysis.

2.1 MethodHandles
A method handle is a constant value that uniquely identifies
a method and how it should be invoked (e.g., as a static
call, or a virtual call). Furthermore, method handles can
apply transformations to the sequence of arguments passed
to the encapsulated method (e.g., unpacking an array into
a sequence containing its values). Method handles can be
embedded in a class file’s constant pool as constants to be
loaded using ldc instructions. A new type of constant pool
entry, CONSTANT_MethodHandle, refers directly to an asso-
ciated CONSTANT_Methodref, CONSTANT_InterfaceMethodref,
or CONSTANT_Fieldref entry. Alternatively, method handles
can be created at run time by calling one of the factory
methods in class java.lang.invoke.MethodHandles.Lookup

(e.g., MethodHandles.Lookup.findVirtual), with arguments
specifying the encapsulated method’s parameter types and
return type. The method encapsulated by a method handle
can be invoked by calling the MethodHandle.invoke() or
MethodHandle.invokeExact() method, with arguments that
should be bound to the method’s receiver (in the case
of virtual methods) and formal parameters. In effect, the
functionality provided by method handles is similar to that
of the Java reflection API, but access checking is performed
only once, upon creation of the handle, whereas java.

lang.reflect.Method.invoke() performs an access check
for each reflective call. From a static analysis perspective, by
denoting a method explicitly, method handles enable more
precise analysis than what was possible using the reflective
idioms required before Java 7.

2.2 The invokedynamic Instruction
The invokedynamic instruction provides a mechanism for
deferring the association between call sites and the methods
they invoke until runtime. It works as follows:

• When an invokedynamic instruction executes for the
first time, its associated bootstrap method is executed. The
association between invokedynamic instructions and
their associated bootstrap methods is recorded in the
bootstrap table, a new component of JVM .class files.

• A bootstrap method returns a java.lang.invoke.Call

Site object that encapsulates a MethodHandle that iden-
tifies the method to be invoked. This method can
be retrieved using the CallSite.getTarget() method,
which is automatically invoked by the JVM at run time.

• The CallSite object returned by a bootstrap method is
cached, so that for subsequent executions of an invoke

dynamic instruction, the JVM only needs to retrieve the
method handle by executing CallSite.getTarget().

This call resolution mechanism is considerably more
flexible than other JVM invoke instructions. In particu-
lar, invokevirtual and invokeinterface specify a target

2. Note that, starting with Java 8, the bytecodes generated from Java
programs also make use of invokedynamic when lambda expressions
(closures) are being compiled. Thus, the analysis challenges noted
here are broadly applicable to statically-typed and dynamically-typed
languages.

method, and calls made through them dispatch to meth-
ods transitively overriding this target method. In such
cases, the name and parameter types of the method are
known at compile time so that a static analysis can analyze
the inheritance hierarchy to conservatively approximate
the set of methods that may be invoked. In the case of
invokedynamic, there is no obvious way for a static anal-
ysis to approximate the set of possible call targets. Boot-
strap methods can be arbitrarily complex, and there are no
compile-time constraints on the name and parameter types
of the subsequently invoked method. Further complicating
matters, CallSite objects returned by bootstrap methods
may be mutable (i.e., encapsulated method handles may
be updated at runtime). However, if the CallSite object
is immutable and the bootstrap method is the standard
Java java.lang.invoke.LambdaMetaFactory, it is possible
for an analysis to pre-process invokedynamic instructions
by rewriting them using standard invokestatic instructions
that simulate the semantics of the original method calls that
use invokedynamic. Alternatively, the analysis would have
to contain hard-coded models fo the bootstrap methods to
reason about invokedynamic. Such approach is currently
used in practice by some analysis frameworks such as
OPAL [23], WALA [11], and Soot [24] to overcome the chal-
lenges around precise and sound analysis of invokedynamic
instructions.

3 EXPERIMENTAL SETUP

3.1 Analysis Details

For all the languages we study in this article, we use
WALA’s implementation of the 0-CFA algorithm [19]
for constructing static call graphs, and WALA’s instru-
mentation-based dynamic call graph builder (Shrike) for
constructing dynamic call graphs. We used the same con-
figuration for the static and dynamic call graph analyses
across all languages.

We conducted all of our experiments using Oracle’s
Java 8u25 running on a machine with eight dual-core AMD
Opteron 1.4 GHz CPUs (running in 64-bit mode) and capped
the available RAM at 16 GB.

3.2 Comparing Call Graphs

We use ProBe [20], a call graph comparison tool, to identify
nodes/edges that occur in the static call graphs but not the
dynamic ones and vice versa, to find unsoundness and loss
of precision. Comparing static and dynamic call graphs is
complicated by the fact that static call graph builders, such
as WALA’s, analyze the Java runtime libraries to compute
sound and precise call graphs with nodes and edges cor-
responding to library code. Instrumentation-based dynamic
call graph builders, such as WALA’s, typically do not track
calls inside the runtime, in order to avoid disrupting run-
time mechanisms invisible at the source level. Therefore,
in the call graphs that WALA constructs, code in the Java
standard library is represented by a single node. In order to
enable a fair comparison, we collapse the parts of the static
call graphs that correspond to code in the Java standard
library into a single node as well. Some additional effort
was involved in handling static initializers and finalizers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 4

consistently in static and dynamic call graphs, by modeling
these as if they are invoked from an anonymous “root”
node.

3.3 Selection of Experimental Subject Programs

In our study, we consider the Scheme, Scala, OCaml,
Groovy, Clojure, Python, and Ruby programming languages
and investigate whether the JVM bytecodes generated by
compilers these languages are amenable to static analysis.
This investigation comprises the following three steps:

1) For each programming language under consideration,
we first consider a simple “hello, world” program to
illustrate the challenges that are likely to arise when
trying to analyze any program in that language. As we
shall see, for several of the programming languages,
the study of such a simple example is already sufficient
to conclude that sound and precise static analysis is
infeasible (e.g., due to pervasive use of reflection or
dynamically generated code).

2) Next, we conduct a systematic evaluation in which
we take 10 programs from the Computer Language
Benchmark Game (CLBG) suite [18] for which versions
are available for each language under consideration.
The use of the same benchmark suite for all programs
enables us to study the programming languages in a
uniform and consistent way, and it enables us to in-
vestigate whether correlations exist between the perfor-
mance characteristics of the generated JVM bytecodes
and the suitability of those bytecodes for static anal-
ysis. Section 3.4 provides further details on the CLBG
programs under study.

3) Lastly, for each programming language under consid-
eration (with the exception of JRuby, because we were
unable to find two large Ruby programs that we could
successfully compile with JRuby’s ahead-of-time build
system), we selected two larger programs in an attempt
to determine whether any additional issues arise due to
the use of features not present in the CLBG programs.

3.4 CLBG Benchmark Suite

For the second part of our study, we consider the following
10 programs3 from the Computer Language Benchmark
Game (CLBG) suite for which versions are available in all
languages under consideration.

• BINARYTREES (BT) prints the time required to allocate
and collect balanced binary trees of various sizes, before
any tree nodes are garbage-collected.

• FANNKUCHREDUX (FK) simulates indexed-accesses to
tiny integer sequences.

• FASTA (FA) generates and writes random DNA se-
quences.

• KNUCLEOTIDE (KN) uses the built-in hash table imple-
mentation to accumulate count values for k-nucleotide
strings, lookup the count for a given string, and update
the count in the hash table.

• MANDELBROT (MB) generates a Mandelbrot set
portable bitmap file.

3. We did not use the other CLBG benchmarks as they are not all
implemented in the JVM-hosted languages under study.

1 (define (bar x y)
2 (display x)
3 (display y) (newline))
4 (define (foo x y)
5 (x y))
6 (foo (lambda (y) (bar ”Hello, ” y)) ”World!”)

Fig. 1. A simple Scheme program.

• NBODY (NB) models the orbits of Jovian planets using
double-precision N-body simulation.

• PIDIGITS (PD) streams arbitrary-precision arithmetic for
the decimal value of π.

• REGEXDNA (RD) matches DNA 8-mers and substitutes
magic patterns.

• REVCOMP (RC) reads DNA sequences, and writes their
reverse complement.

• SPECTRALNORM (SN) is a program that calculates
Eigenvalues using the power method.

4 SCHEME

Scheme [7] is a dialect of the functional programming lan-
guage Lisp. Scheme is dynamically typed, and has a simple
syntax based on lists and prefix operators. Its distinguishing
features include lexical scoping and higher-order functions.
Kawa [25] implements an extension of Scheme that runs on
the JVM and interoperates well with Java libraries. In our
experiments, we used Kawa version 3.0.

4.1 Translation to JVM bytecode
Figure 1 shows a Scheme “Hello, World!” program that
defines functions foo and bar. On line 6, foo is invoked with
two arguments: a function and a string. Inside function foo,
this function is invoked with the string as its argument. The
body of the anonymous function on line 6 invokes function
bar on the string constant “Hello, ” and its second argument,
so the call to bar will result in printing “Hello, World!”.

Figure 2 shows the relevant fragments of the JVM byte-
codes produced by the Kawa compiler for the program of
Figure 1. In this diagram and subsequent diagrams, solid
arrows represent a single call graph edge (i.e., a situa-
tion where a method call dispatches to a specific method
definition), and dashed arrows represent sequences of call
edges. The Kawa compiler produces a single class hello

containing static methods foo() and bar() corresponding
directly to the two functions in Figure 1. The class also
contains a static initializer that initializes the environment,
and a run() method corresponding to the top-level code. A
main() method starts execution by invoking runAsMain()

(indicated by the arrow labeled 1 in the figure), which
invokes run() via a library callback (see the arrow labeled
2).

For simple function calls, a one-to-one mapping exists
between function calls in the Scheme source code and
invokestatic calls in the JVM bytecode produced by the
Kawa compiler. For example, the call to foo on line 6 in
Figure 1 is reflected by the static method call labeled 3 in
Figure 2.

The translation of higher-order functions is more in-
volved. The lambda expression on line 6 is represented

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 5

package gnu.expr;
interface RunnableModule {
 void run(gnu.mapping.CallContext);
}

package gnu.mapping;
class ProcedureN {

 void apply2(...) { ... }

}

class hello extends gnu.expr.ModuleMethod
 implements RunnableModule {
 ...
 static {
 new hello
 putstatic $instance:Lhello;
 ...
 new gnu/expr/ModuleMethod
 putstatic lambda$Fn1
 ...
 }
 static void main(java.lang.String[]);  
 getstatic $instance:Lhello;
 invokestatic gnu.expr.ModuleBody.runAsMain(RunnableModule) 
 }

 static void runAsMain(gnu.expr.RunnableModule);
 ...
 invokeinterface gnu.expr.RunnableModule.run 
 ...
 }
 void run(gnu.mapping.CallContext) {  
 ...  
 getstatic lambda$Fn1:Lgnu/expr/ModuleMethod;
 ldc String World!
 invokestatic hello.foo(...)
 ...  
 }
 static void foo(...) {  
 ...
 invokevirtual gnu.mapping.Procedure apply2(...);
 ...  
 }
 static void bar() {
 ...  
 }
}

1

2

3

4

5

Fig. 2. Depiction of the bytecodes produced by the Kawa compiler for the program of Figure 1.

using an object of type gnu.expr.ModuleMethod. The static
initializer of class hello creates this object and stores it
into a field that is later read by the run() method and
passed as an argument to foo(), which calls a library
method gnu.mapping.ProcedureN.apply2() to call the func-
tion bound to the argument (see the edge labeled 4). This
library method calls several other library methods, which
eventually call hello.bar() (see the arrow labeled 5).
In other words, the translation of higher-order functions
involves lengthy sequences of calls through common library
functions, which implies there is potential for significant
loss of precision unless many levels of context-sensitivity
are employed. However, we did not observe any use of
reflection or invokedynamic in the entire sequence of calls
that would compromise the soundness of a bytecode-based
static analysis.

4.2 Qualitative Analysis

Since the Kawa compiler avoids the use of reflection and
invokedynamic, the call graph constructed by WALA for the
example program of Figure 1 is sound.

4.3 Quantitative Analysis

Table 1 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,

TABLE 1
Various characteristics of the Scheme CLBG programs.

LOC Bytecode Size (KB) # classes # methods # call sites

BT 36 3.05 2 7 42

FK 106 2.71 1 4 28

FA 90 4.25 1 8 107

KN 217 4.51 1 10 97

MB 58 2.33 1 4 20

NB 116 4.05 2 13 37

PD 88 4.29 3 17 69

RD 51 3.18 1 4 65

RC 66 2.30 1 4 14

SN 39 2.29 1 8 24

as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 2 shows the number of nodes and edges in the
static (columns S) and dynamic (columns D) call graphs for
the Scheme programs in our benchmark suite. Also shown
are the number of nodes/edges in the dynamic call graphs
but not in the static call graphs (columns D\S), and those
in the static call graphs but not in the dynamic call graphs
(columns S\D).4 As can be seen from the D\S columns of the

4. The tables in Sections 5–10 follow the same structure.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 6

TABLE 2
Count of nodes and edges in the static and dynamic call graphs of the

Scheme CLBG programs.

Nodes Edges

S D D\S S\D S D D\S S\D

BT 9,066 501 0 8,565 49,497 686 0 48,811

FK 9,063 503 0 8,560 49,492 680 0 48,812

FA 9,067 511 0 8,556 49,525 704 0 48,821

KN 9,070 707 0 8,363 49,547 1,063 0 48,484

MB 9,063 460 0 8,603 49,487 617 0 48,870

NB 9,072 564 0 8,508 49,506 790 0 48,716

PD 9,076 509 0 8,567 49,518 690 0 48,828

RD 9,063 528 0 8,535 49,483 734 0 48,749

RC 9,063 286 0 8,777 49,480 378 0 49,102

SN 9,067 552 0 8,515 49,493 766 0 48,727

TABLE 3
Various characteristics of the CHESS and JEMACS Scheme programs.

LOC Bytecode Size (MB) # classes # methods # call sites

CHESS 582 0.08 9 385 2,428

JEMACS 4,883 1.63 825 8,492 49,441

table, all nodes/edges in the dynamic call graphs also occur
in the static call graphs, suggesting that the call graphs are
sound.

At first glance the computed static call graphs appear to
be quite imprecise because many nodes/edges in the static
call graphs do not occur in the dynamic call graphs (see
columns S\D). However, upon closer inspection we found
nearly all of this imprecision to occur in parts of the static
call graph corresponding to code in the Kawa libraries. The
parts of the call graph corresponding to the application itself
are generally precise for direct calls, though some loss of
precision occurs if lambda expressions are used as in the
example program discussed previously. In summary, for the
programs under consideration, Kawa generates bytecode
that is easily amenable to static analysis. This is in stark
contrast, as we will show later, to the highly unsound
static call graphs for the other dynamically-typed languages
(Groovy, Clojure, Python, and Ruby).

4.4 Additional Case Studies
In addition to the Scheme CLBG programs, we have studied
CHESS and JEMACS5, two larger Scheme applications that

5. Sources are available from https://github.com/ttu-fpclub/
kawa-chess and http://jemacs.sourceforge.net.

TABLE 4
Count of nodes and edges in the static and dynamic call graphs of the

CHESS and JEMACS Scheme programs.

Nodes Edges

S D D\S S\D S D D\S S\D

CHESS 12,297 687 0 11,610 77,981 1,293 17 76,705

JEMACS 8,601 1,313 8 7,296 64,148 2,495 28 61,681

7 (define−syntax do−board
8 (syntax−rules ()
9 (((var final) body ...)

10 (do ((i 0 (+ i 1)))
11 ((>= i 8) final)
12 (do ((j 0 (+ j 1)))
13 ((>= j 8))
14 (let ((var (position i j)))
15 body ...))))))
16
17 (define (initialize−board)
18 (do−board (pos ’())
19 (let ((col (apply starting−color pos))
20 (pie (apply starting−piece pos)))
21 (array−set! *board* (yvalue pos) (xvalue pos)
22 (apply starting−status pos)))))

Fig. 3. A Scheme program necessitating reflection.

are publicly available on GitHub and SourceForge, respec-
tively. CHESS is a Swing-based program for playing chess,
in which two people play against each other. JEMACS is
a Java/Scheme-based Emacs text editor. Both CHESS and
JEMACS are based on Kawa 3.0, which implements Scheme
R7RS. Table 3 shows, for both programs (excluding library
code), the number of lines of source code, as well as the size
of the generated bytecodes, the number of classes, methods,
and call sites in the generated bytecodes.

Table 4 shows that only 8 nodes are missing from
the static call graph for JEMACS compared to its dynamic
call graph. Further investigation of the call graphs shows
that all 8 nodes represent methods that are called from
gnu.mapping.Future.run(), which handles threads in the
Kawa runtime library. While WALA supports Java threads,
it currently does not support Kawa-specific threads. Those
nodes are the root cause of missing 28 edges in the static call
graph for JEMACS compared to its dynamic call graph. For
CHESS, the static call graph is sound with respect to nodes,
but misses 27 edges compared to the dynamic call graph.
However, all missing edges are within the Kawa runtime
library, which still renders the produced static call graphs
useful for various applications such as code navigation in
development environments.

The precision of the larger Scheme programs is sim-
ilar to the pattern in the CLBG programs, where preci-
sion is compromised largely by lack of sufficient context-
sensitivity in handling indirections through the standard
library. However, there is one issue that we did not en-
counter in CLBG. The Kawa implementation uses reflec-
tion to handle first-class function calls that use apply in
Scheme. Fig. 3 shows an example of that idiom from
CHESS, in which initialize-board calls several func-
tions using apply: starting-color, starting-piece, and
starting-status. The initialize-board function is it-
self defined using the do-board macro. Kawa handles
syntax-rules in do-board and generates analyzable code
for it. However, apply uses functions from a table filled
in using calls to MethodHandle.Lookup.findStatic(). The
arguments to findStatic() are a java.lang.Class denot-
ing the method’s class, a java.lang.String denoting the
method name, and a java.lang.invoke.MethodType denot-
ing the argument and return types. The class objects are
specified directly in the bytecode, and WALA can track

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 7

23 object hello {
24 def main(args: Array[String]) = {
25 (new T with A).bar
26 val identity : Object=>Object = { x => x }
27 println (identity (”Hello, World!”))
28 }
29 }
30 trait A
31 trait T {
32 def bar = println (”T.bar”)
33 }

Fig. 4. A simple Scala program.

them precisely in this case. The method name string is also
specified directly, and WALA statically tracks that too to
the call site. Although the method type is ignored, WALA
has sufficient analysis of reflection to find all methods with
the right name. Since these are Scheme functions, there is
exactly one such method. Therefore, WALA finds precisely
the methods to be called, and the call graph remains sound
despite this use of reflection. Precision is lost in this case,
though, because all such methods are stored in tables in the
heap.

5 SCALA

Scala [6] is a statically-typed, object-oriented, functional
programming language. Its functional programming idioms
include pattern matching, lazy evaluation, and closures. In
Scala, method and field definitions can be grouped into traits
that can be mixed into classes. The Scala compiler compiles
to JVM bytecode. Our experiments used Scala 2.10.2.

5.1 Translation to JVM bytecode

Figure 4 shows a Scala program that defines traits A and T.
The main method calls bar on the trait composition (T with

A). It then defines a closure identity and calls it, causing
“Hello, World” to be printed.

Figure 5 shows the revelant bytecode instructions pro-
duced by the Scala compiler for the program of Figure 4. A
Scala trait, such as T in our example, is translated into two
JVM class files: T and T$class. Interface T contains the dec-
laration for the method bar of the trait T. The abstract class
T$class defines a static method containing the bytecode
translation of the body of bar. Finally, a trait composition
such as (T with A) is translated into an anonymous class
hello$$anon$1 that implements all its traits. The call to bar

on line 25 corresponds to two method calls in the gen-
erated bytecode: an invokevirtual to hello$$anon$1.bar

(reflected by the arrow labeled 1 in Figure 5), which
contains an invokestatic to the actual implementation in
T$class.bar (see the arrow labeled 2).

A Scala closure such as identity is translated into an
anonymous class hello$$anonfun$1 that extends scala.

runtime.AbstractFunction1 that in turn implements scala.
Function1 in which an abstract method named apply is de-
fined. The anonymous class hello$$anonfun$1 implements
the body of the closure in a concrete implementation of this
apply method. The call to the identity closure on line 27
corresponds to an invokeinterface call to Function1.apply,

TABLE 5
Various characteristics of the Scala CLBG programs.

LOC Bytecode Size (KB) # classes # methods # call sites

BT 27 3.57 4 9 43

FK 45 10.85 9 52 151

FA 95 7.69 6 35 91

KN 51 38.00 27 245 606

MB 35 10.44 10 51 112

NB 62 10.22 9 43 173

PD 87 16.18 12 64 203

RD 30 7.57 7 23 86

RC 22 7.59 5 37 79

SN 30 6.97 8 28 57

TABLE 6
Count of nodes and edges in the static and dynamic call graphs of the

Scala CLBG programs.

Nodes Edges

S D D\S S\D S D D\S S\D

BT 788 515 0 273 1,337 647 0 690

FK 1,315 799 0 516 2,533 1,106 0 1,427

FA 1,011 598 0 413 1,937 808 0 1,129

KN 2,605 1,501 0 1,104 5,985 2,421 0 3,564

MB 993 578 0 415 1,888 771 0 1,117

NB 966 639 0 327 1,846 875 0 971

PD 1,245 690 0 555 2,743 1,008 0 1,735

RD 983 590 0 393 1,711 771 0 940

RC 849 530 0 319 1,488 673 0 815

SN 1,064 616 0 448 1,989 809 0 1,180

which is resolved at run time to the apply method of
the hello$$anonfun$1 class (see the arrow labeled 3 in
Figure 5).

For certain Scala features (e.g., mutable fields in anony-
mous classes), the Scala compiler generates JVM bytecodes
containing reflective method calls, which challenges sound
static analysis. A sound static analysis would have to make
conservative approximations that cause the static call graph
to become extremely large and imprecise.

5.2 Qualitative Analysis
For the example of Figure 4, no significant challenges
for static analysis are evident and a sound call graph is
constructed. Nevertheless, as reported by Ali et al. [26],
analyzing JVM bytecodes generated by the Scala compiler
can result in less precise call graphs than those constructed
from Scala source code. This loss of precision occurs because
significant type information is lost in the process of translat-
ing certain Scala features (e.g., closures) to JVM bytecode.

The Scala compiler translates each call to a closure to an
invokeinterface to the apply method of scala.FunctionN,
where N is the arity of the closure. Therefore, a bytecode-
based static call graph analysis will create edges to the apply

methods of all subclasses of scala.FunctionN from each of
the call sites to scala.FunctionN.apply(), thus rendering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 8

class hello$ {
 public static void main(String[] args){
 ...
 invokevirtual hello$$anon$1.bar()
 ...
 invokeinterface scala.Function1.apply(…);
 ...
 }
}

class hello$$anon$1 implements T,A {
 ...
 void bar() {
 ...
 invokestatic T$class.bar(this)
 ...
 }
 ...
}
abstract class T$class {
 static void bar(T t) { ... }
}

interface scala.Function1 {
 ...
 abstract Object apply(Object);
 ...
}

abstract class scala.runtime.AbstractFunction1
 implements scala.Function1 {
 ...
}

class hello$$anonfun$1 extends
 scala.runtime.AbstractFunction1 {
 ...
 Object apply(Object){ ... }
 ...
}

1

2

3

Fig. 5. Depiction of the bytecodes produced by the Scala compiler for the program of Figure 4.

the produced static call graphs extremely imprecise6. Ali et
al. [26] present a family of algorithms for constructing call
graphs of Scala programs from source code that avoids this
loss of precision by taking advantage of the type param-
eters of scala.FunctionN. Those types correspond to the
parameter and return types of the closure, but are erased
when bytecode is generated and are therefore unavailable
to a bytecode-based analysis.

5.3 Quantitative Analysis

Table 5 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

For each of the benchmark programs in Table 6, the
nodes and edges in the dynamic call graphs are subsets
of those in the corresponding static call graphs, so they
are sound for this execution. However, for FASTAREDUX,
one of the CLBG programs that we did not include in our
quantitative experiments7, we noticed 2 methods and 2 call
edges that are missing in the static call graph compared to
the dynamic call graphs. Further investigation revealed that
this unsoundness arises from the use of reflection in the
bytecodes generated by the Scala compiler for converting
collections into arrays, similar to what the Java method
java.util.ArrayList.toArray(T[]) does. When we exam-
ined the precision of the static call graphs, we found that
on average, about 15% of the edges that are in the static
call graphs but not in the dynamic call graphs involve calls
to/from apply() methods.

TABLE 7
Various characteristics of the FACTORIE and KIAMA Scala programs.

LOC Bytecode Size (MB) # classes # methods # call sites

FACTORIE 35,428 8.95 6,401 64,222 115,807

KIAMA 17,914 6.67 5,143 44,847 79,071

TABLE 8
Count of nodes and edges in the static and dynamic call graphs of the

FACTORIE and KIAMA Scala programs.

Nodes Edges

S D D\S S\D S D D\S S\D

FACTORIE 5,796 1,202 0 4,594 17,548 2,244 226 15,530

KIAMA 4,922 1,193 0 3,729 18,952 2,186 408 17,174

5.4 Additional Case Studies

In addition to the Scala CLBG programs, we have studied
FACTORIE and KIAMA8, the largest two Scala applications
from the DaCapo Scala Benchmarking project [27]. FACTO-
RIE is a toolkit for probabilistic modeling. It provides its
users with a language for creating relational factor graphs,
estimating parameters and performing inference. KIAMA is a
library for language processing used to compile and execute
several small languages. Table 7 shows, for both programs
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

For FACTORIE and KIAMA in Table 8, the static
call graphs are not missing any nodes compared
to the dynamic call graphs, but are missing some

6. Unless the analysis maintains multiple levels of (call-string)
context-sensitivity, which would be prohibitively expensive.

7. We did not include FASTAREDUX in our study because versions of
this program are not available for Scheme, OCaml, Groovy, and Python.

8. Sources are available from https://github.com/factorie/factorie
and https://bitbucket.org/inkytonik/kiama.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 9

34 let bar x y =
35 print string x;
36 print string y;
37 print string ”done\n”;;
38 let foo x y =
39 print string ” starting\n”;
40 x y ;;
41 foo (bar ”Hello, ”) ”World!\n”;;

Fig. 6. A simple OCaml program.

edges (FACTORIE: 226 edges and KIAMA: 408 edges).
The missing edges mainly involve reflective Scala
constructs such as scala.reflect.ManifestFactory and
scala.reflect.ClassTag. With respect to precision, more
than 20% of the edges (FACTORIE: 22.56% and KIAMA:
23.76%) that are in the static call graphs but not in the
dynamic call graphs involve calls to/from apply() methods.
This result shows that the effect of losing type information
on the static call graph precision is worse for analyzing
real-world applications, such as FACTORIE and KIAMA, com-
pared to the Scala CLBG benchmark programs.

5.5 Recent Developments
There were no significant changes to code generation in
the 2.10 and 2.11 series of Scala releases. Scala 2.12 and 2.13
use a new code generation back-end that targets features
introduced in version 8 of the Java Virtual Machine. In
particular, these versions of Scala compile closures in the
same way as Java 8, using the invokedynamic instruction,
as discussed in Section 2. This eliminates the need for the
compiler to generate a separate class (like hello$$anonfun$1

in Figure 4) for every closure in the program. In addition,
these versions of Scala compile traits to Java interfaces and
implement methods using the default interface methods
that were introduced in Java 8. This eliminates the need for
a class to implement the methods of each trait (like T$class

in Figure 4). Dotty, the compiler that will be used for Scala 3
when it is released, also uses these new code generation
techniques.

6 OCAML

OCaml is a general-purpose programming language sup-
porting functional, imperative and object-oriented styles.
Types are strong, static, and inferred by the compiler.
OCaml-Java [28] compiles OCaml code to JVM bytecode.
We used OCaml-Java 2.0-alpha2, based on OCaml 4.01.0.

6.1 Translation to JVM bytecode
Figure 6 shows an OCaml program that declares func-
tions foo and bar. This program illustrates currying, in
the partial call to bar with one argument “Hello, ”. This
closure is passed to foo along with the argument “World\n”.
Function foo calls its argument x (which is bound to bar)
with y (bound to “World\n”) as a parameter. Function bar

prints both its arguments, resulting in the expected “Hello,
World!” output.

Figure 7 visualizes the bytecodes produced by the
OCaml compiler for the program of Figure 6. The

TABLE 9
Various characteristics of the OCaml CLBG benchmarks.

LOC Bytecode Size (KB) # classes # methods # call sites

BT 45 10.87 4 101 438

FK 83 10.71 4 101 390

FA 124 13.08 4 101 594

KN 43 13.17 4 101 626

MB 30 9.83 4 101 271

NB 120 11.61 4 101 599

PD 63 12.95 4 101 723

RD 29 11.68 4 101 558

RC 53 10.22 4 101 353

SN 40 10.28 4 101 358

TABLE 10
Count of nodes and edges in the static and dynamic call graphs of the

OCaml CLBG programs.

Nodes Edges

S D D\S S\D S D D\S S\D

BT 5,963 532 0 5,431 75,056 1,464 64 73,656

FK 5,973 544 0 5,429 74,883 1,487 70 73,466

FA 5,966 349 0 5,617 75,363 1,165 8 74,206

KN 5,981 586 0 5,395 77,949 1,793 89 76,245

MB 5,958 527 0 5,431 74,832 1,417 61 73,476

NB 6,977 526 0 6,451 88,592 1,468 61 87,185

PD 5,986 424 0 5,562 76,230 1,413 25 74,842

RD 5,962 696 0 5,266 75,056 2,074 102 73,084

RC 5,960 345 0 5,615 75,133 1,166 8 73,975

SN 5,963 532 0 5,431 75,028 1,455 61 73,634

OCaml Java runtime compiles the Hello class to extend
AbstractNativeRunner, which provides the machinery to
invoke moduleMain in a threading harness (see the dashed
arrow labeled 1). The top-level code from Figure 6 is trans-
lated to method entry(), which is called from moduleMain()

(see the call edge labeled 2).

OCaml-Java translates functions into methods, and di-
rect function calls into invokestatic calls. For instance,
the call to foo at line 41 is represented by the edge la-
beled 3 . Currying is translated by constructing a clo-
sure object using org.ocamljava.runtime.values.Value.

createClosure(), in combination with an extra function
object. Crucially, first-class functions are named explicitly
using MethodHandles and stored as bytecode constants.
In the example of Figure 6, the partial call to bar at
line 41 is translated by calling createClosure(), calling
setClosure() on it with a MethodHandle representing bar(),
and then recording the closure parameter “World!\n” by
calling set2() on the closure. Then, the closure itself is
invoked (see the edge labeled 4), which invokes bar us-
ing MethodHandle.invokeExact() (see edge 5), avoiding
string-based reflection.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 10

class pack.ocamljavaMain extends AbstractNativeRunner {
 …
 public static void main() {
 new pack.ocamljavaMain
 invokevirtual pack.ocamljavaMain.mainWithReturn
 }

 void moduleMain(…){
 ...
 invokestatic pack.Hello.entry();
 ...
 }
 ...
}

class org.ocamljava.runtime.kernel.NativeApply {
 ...
 static Value apply(Value,Value) {
 ...
 checkcast MethodHandleValue
 ...
 invokevirtual MethodHandleValue.getHandle()
 ...
 invokevirtual MethodHandle.invokeExact(Value)
 ...
 }

class pack.Hello ... {
 ...
 static Value entry() {
 ...
 invokestatic createClosure(J) Value;
 MethodHandle pack.Hello.fun_1022
 invokevirtual setClosure(MethodHandle;) Value;
 dup
 aload_1
 invokevirtual Value.set2(Value)V
 ...
 invokestatic pack.Hello.foo_1051();
 ...
 }

 static void foo_1011(Value, Value) {
 ...
 invokestatic NativeApply.apply(Value,Value)
 ...
 }

 static void fun_1022() {
 ...
 }
 ...
}

2

3

4

5

1

Fig. 7. Depiction of the bytecodes produced by the OCaml compiler for the program of Figure 6.

6.2 Qualitative Analysis

OCaml-Java exploits MethodHandles to great effect, making
heavy use of constant MethodHandles embedded in the byte-
code, and avoiding string-based reflection. Thus, first-class
functions manifest as explicit method constants; WALA
models these constants and invocations on them. Hence,
functions such as bar appear in the call graph. This does
not, in itself, make an analysis precise. Functions passed as
arguments may cause imprecision in a context-insensitive
analysis, just as dynamic dispatch on parameters can in
object-oriented languages. However, this is the same well-
studied problem of context-sensitivity that has inspired so
many techniques for object-oriented languages [9], [29].

6.3 Quantitative Analysis

Table 9 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 10 presents quantitative results for the OCaml
CLBG programs. The impact of using MethodHandles in a
way that is amenable to static analysis is apparent from
the absence of unsoundness in the methods in all of the
static call graphs. There is some unsoundness in the edges—
always less than 5%—mostly due to idioms in the OCaml
runtime involving the use of java.lang.reflect.Proxy for
method calls. WALA does not understand this reflective
idiom, so edges are missing from the static graph. This
sometimes causes further missing edges as needed code is
deemed unreachable by the static analysis. Also, proxies
result in runtime-generated code appearing on the stack,
so the dynamic call graphs contain edges that do not
correspond to any source code and hence will be missing
from the static call graph. However, manual investigation
of these missing edges show that they all occur within
the OCaml runtime library. Therefore, the produced static

TABLE 11
Various characteristics of the OCAMLLEX and OCAMLDOC OCaml

programs.

LOC Bytecode Size (MB) # classes # methods # call sites

OCAMLLEX 2,895 1.61 756 13,079 82,225

OCAMLDOC 21,823 4.73 2,514 28,401 376,194

TABLE 12
Count of nodes and edges in the static and dynamic call graphs of the

OCAMLLEX and OCAMLDOC OCaml programs.

Nodes Edges

S D D\S S\D S D D\S S\D

OCAMLLEX 6,065 1,046 4 5,023 94,811 3,669 340 91,482

OCAMLDOC 26,834 3,756 4 23,082 2,352,782 19,959 2,260 2,335,083

call graphs could still be useful for various applications
(e.g., code navigation support in integrated development
environments such as Eclipse).

Precision is low across all programs—many nodes and
edges in the static call graphs are not present in the
dynamic ones. There are several causes. First, values are
sometimes stored in a boxed form (org.ocamljava.runtime.
Value) and indirections used to access and convert them
make our context-insensitive analysis imprecise. Second,
MethodHandle objects are passed to runtime primitives to
handle calls, and context-insensitive analysis of these primi-
tives causes significant imprecision. These issues cause more
of the standard library to be reachable, which adds further
imprecision as edges and nodes from those functions get
added. We expect that the imprecision in our OCaml analy-
sis can be addressed to a great extent by existing techniques
(e.g., using the Cartesian Product Algorithm [30]).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 11

6.4 Additional Case Studies
In addition to the OCaml CLBG programs, we have stud-
ied OCAMLLEX and OCAMLDOC9, two larger OCaml ap-
plications that are publicly available on GitHub. OCAM-
LLEX is the lexer generator part of the OCaml-Java com-
piler. OCAMLDOC is the documentation generator tool that
ships with the OCaml-Java compiler. Both OCAMLLEX and
OCAMLDOC are based on OCaml 4.01.0. Table 11 shows,
for both programs (excluding library code), the number of
lines of source code, as well as the size of the generated
bytecodes, the number of classes, methods, and call sites in
the generated bytecodes.

Table 12 shows that only 4 nodes are missing from the
static call graphs for OCAMLLEX and OCAMLDOC compared
to their respective dynamic call graphs. Further investiga-
tion shows that all 4 nodes are involved in reflective method
calls to/from methods in the class org.ocamljava.runtime.

annotations.parameters.Parameters. The code that allo-
cates some of these objects uses java.lang.reflect.Proxy.

newProxyInstance, which is not currently modelled soundly
by WALA. With respect to call graph edges, the static call
graphs for OCAMLLEX and OCAMLDOC are missing 9% and
11%, respectively, of the total number of edges present in
their dynamic call graphs. Our manual investigation shows
that those edges are missing primarily due to the missing
nodes that are caused by the unsound handling of reflection
in WALA, as well as some runtime-generated code that
creates objects on the stack. Similar to our observation with
the CLBG OCaml programs, most of those edges occur
within the OCaml runtime library, which still renders the
generated static call graphs useful for some applications
such as IDE support.

The majority of methods (more than 82%) and edges
(more than 96%) in the static call graphs for OCAMLLEX
and OCAMLDOC are not present in the dynamic call graphs,
mainly due to the indirections that arise from storing values
in a boxed form, and the context-insensitive handling of
calls that involve MethodHandle objects. Those are the same
reasons for imprecision as in the smaller CLBG OCaml
programs. We did not observe any additional issues that
would further compromise precision.

7 GROOVY

Groovy [2] is a dynamically-typed object-oriented scripting
language that seamlessly integrates with Java. The Groovy
compiler provides the option of generating code that makes
use of the invokedynamic instruction. We conducted two sets
of experiments, with and without this option, to understand
the impact of this feature. For our experiments, we used
Groovy version 2.4.3.

7.1 Translation to JVM bytecode
For calls between Groovy methods, every class contains
several static methods that construct an array of CallSite

objects, implemented in the standard library. This array is
indexed by numbers that are assigned to each call site in the
class. Each CallSite object is initialized with the name of

9. Sources are available from https://github.com/xclerc/ocamljava.

42 def foo(x) {x()}
43 def bar = {println ’Hello, World!’}
44 foo(bar)

Fig. 8. A simple Groovy program.

the method to be called. At a call site, the generated byte-
code retrieves the corresponding CallSite object from the
array and invokes a method named call on it, passing any
parameters. The call method invokes many other methods
in multiple classes within the Groovy standard library, and
ultimately looks up an object of type GroovyObject and calls
invokeMethod() on it. Using a dynamic representation of the
class hierarchy, invokeMethod() looks up the name of the
target method and calls it through reflection. The translation
of closures involves the creation of an additional object, and
invoking its doCall() method using a similar sequence of
reflective method calls that starts with an invocation of a
method callCurrent.

Figure 9 shows the relevant bytecodes produced by the
Groovy compiler for the program of Figure 8. In the trans-
lated code, the generated main() method invokes CallSite.
call() to reflectively invoke the run() method contain-
ing the top-level code (see the edges labeled 1 and 2).
The run() method calls CallSite.callCurrent() to invoke
method foo() (edges 3 and 4), which in turn invokes
CallSite.call() again to invoke the closure assigned to
variable bar (edges 5 and 6).

If the use of invokedynamic is enabled, the bootstrap
method used by Groovy returns a MutableCallSite that
initially points to the same general lookup code that is used
in the case without invokedynamic. The first time the call site
is executed and the desired target method is looked up, the
MutableCallSite is updated with the MethodHandle of the
target method. Subsequent calls invoke this MethodHandle

directly. However, from the point of view of a static analysis,
the initial procedure used to determine the target of a call is
equally complicated.

7.2 Qualitative Analysis
Each of the dashed lines in Figure 9 represents a sequence
of calls containing at least one reflective method call. In
general, the many levels of call indirection, object creation,
dynamic data structure lookup, and reflection are too com-
plicated for a static analysis to model. In particular, no call
edges are created for the calls on lines 42 and 44 in the
Groovy code example in Figure 8.

7.3 Quantitative Analysis
Table 13 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Quantitative results for the Groovy benchmarks10 are
shown in Table 14. Only the main method appears in the

10. CLBG does not provide Groovy implementations of KNU-
CLEOTIDE and FANNKUCHREDUX. Therefore, we ported existing CLBG
implementations to Groovy. We verified correctness by comparing their
output against expected output detailed in CLBG.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 12

class hello extends groovy.lang.Script {

 static void main(…){
 …
 invokeinterface CallSite.call(…)
 …
 }
 Object run(){
 …
 new hello2$_run_closure1(…)
 …
 invokeinterface CallSite.callCurrent(…)
 …
 }
 Object foo(){
 …
 invokeinterface CallSite.call(…)
 …
 }
}
class hello2$_run_closure1 … {
 …
 Object doCall(Object){
 …
 ldc ‘hello world’
 invokeinterface CallSite.callCurrent(…)
 …
 }
 …
}

package org.codehaus.groovy.runtime.callsite;

class CallSite {
 …
 Object call(…){
 …
 }

 Object callCurrent(…){
 …
 }
 …

}

1

2

3

4

5

6

Fig. 9. Depiction of the bytecodes produced by the Groovy compiler for the program of Figure 8.

TABLE 13
Various characteristics of the Groovy CLBG programs (top: without

invokedynamic, bottom: with invokedynamic).

LOC Bytecode Size (KB) # classes # methods # call sites

BT 45 7.22 2 69 235

FK 83 5.19 1 40 206

FA 124 7.02 1 62 357

KN 43 9.57 4 68 281

MB 30 4.92 1 39 209

NB 120 12.19 3 98 436

PD 63 10.26 3 107 314

RD 29 7.05 3 59 151

RC 53 8.68 2 77 507

SN 40 4.84 1 44 196

LOC Bytecode Size (KB) # classes # methods # call sites

BT 52 6.37 2 63 158

FK 108 4.60 1 37 159

FA 154 6.00 1 59 209

KN 232 8.49 4 58 202

MB 104 4.63 1 36 141

NB 190 10.89 3 89 384

PD 29 9.20 3 98 251

RD 53 6.52 3 50 118

RC 89 7.14 2 71 287

SN 41 4.31 1 41 154

static call graphs, because WALA is unable to compute
any call edges for any call sites in application code. The
computed static call graphs have very similar sizes because
they call approximately the same methods in the Groovy
library from boilerplate code in the generated main class.

In the case without invokedynamic, the static call graphs
are much larger than the dynamic ones because the static
analysis infers that most of the Groovy library could be
called, but the benchmark programs use only a small
fraction at run time. Furthermore, there is significant un-
soundness due to the use of reflection. If invokedynamic

is enabled, the static call graphs are much smaller because
much less boilerplate initialization code is reachable. How-
ever, the analysis results become more unsound because
analysis of the complex, reflection-heavy code reachable via
invokedynamic calls is beyond the state of the art.

7.4 Additional Case Studies
In addition to the Groovy CLBG programs, we have studied
CODENARC and GRULES11, two large Groovy applications
that are publicly available on GitHub. CODENARC is a static
analysis tool for Groovy source files that checks for a pre-
defined set of coding standards and best practices. GRULES
is a rule engine for data preprocessing. Table 15 shows,
for both programs (excluding library code), the number of
lines of source code, as well as the size of the generated
bytecodes, the number of classes, methods, and call sites in
the generated bytecodes.

11. Sources are available from https://github.com/CodeNarc/
CodeNarc and https://github.com/zhaber/grules.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 13

TABLE 14
Count of nodes and edges in the static and dynamic call graphs of the
Groovy CLBG programs (top: without invokedynamic, bottom: with

invokedynamic).

Nodes Edges

S D D\S S\D S D D\S S\D

BT 6,089 744 37 5,382 30,242 1,632 281 28,891

FK 6,089 726 19 5,382 30,242 1,573 204 28,873

FA 6,248 812 34 5,470 30,987 1,712 274 29,549

KN 6,089 832 57 5,314 30,243 1,835 390 28,798

MB 6,089 759 45 5,375 30,243 1,552 237 28,928

NB 6,089 842 57 5,304 30,243 1,850 378 28,771

PD 6,089 736 31 5,384 30,242 1,675 308 28,875

RD 6,089 761 43 5,371 30,242 1,576 226 28,892

RC 6,089 745 51 5,395 30,242 1,504 221 28,959

SN 6,089 737 20 5,372 30,242 1,667 284 28,859

Nodes Edges

S D D\S S\D S D D\S S\D

BT 613 645 216 184 1,513 1,197 410 726

FK 613 623 196 186 1,513 1,131 347 729

FA 618 655 224 187 1,521 1,250 468 739

KN 613 742 296 167 1,514 1,380 567 701

MB 613 651 224 186 1,514 1,222 445 737

NB 613 727 285 171 1,514 1,383 572 703

PD 613 670 242 185 1,513 1,257 473 729

RD 613 629 199 183 1,513 1,163 392 742

RC 613 606 183 190 1,513 1,087 321 747

SN 613 632 202 183 1,513 1,224 439 728

TABLE 15
Various characteristics of the CODENARC and GRULES Groovy

programs.

LOC Bytecode Size (MB) # classes # methods # call sites

CODENARC 56,269 2.18 1,185 15,259 43,470

GRULES 6,793 0.29 163 1,752 6,743

TABLE 16
Count of nodes and edges in the static and dynamic call graphs of the

CODENARC and GRULES Groovy programs (top: without
invokedynamic, bottom: with invokedynamic).

Nodes Edges

S D D\S S\D S D D\S S\D

CODENARC 7,188 1,320 1,302 7,170 40,420 2,513 2,492 40,399

GRULES 7,142 430 416 7,128 40,121 837 821 40,105

Nodes Edges

S D D\S S\D S D D\S S\D

CODENARC 6,718 873 864 6,709 38,632 1,663 1,655 38,624

GRULES 6,735 251 248 6,732 38,659 464 463 38,658

45 (ns hello .core
46 (: gen−class))
47 (defn bar [& args]
48 (println ”Hello, World!!”))
49 (defn foo [& args]
50 (bar args))
51 (defn −main [& args]
52 (foo args))

Fig. 10. A simple Clojure program.

For CODENARC and GRULES in Table 16, a significantly
low percentage of the methods and call edges that appear
in the static call graphs are for call sites in the application
code (CODENARC: 0.25% methods and 0.33% edges; GRULES:
0.17% methods and 0.18% edges). Similar to our quantitative
analysis of the Groovy CLBG programs, the static analysis
is simply unable to compute any call edges for most of
the call sites in the application code. Moreover, compiling
the applications with support for invokedynamic does not
improve the results (CODENARC: 0.13% methods and 0.09%
edges; and GRULES: 0.03% methods and 0.02% edges).

8 CLOJURE

Clojure [1], [31] is a dialect of Lisp; key language features
include higher-order functions, a powerful macro system,
and concurrency control based on Software Transactional
Memory. In our experiments, we have used Clojure version
1.5.1.

8.1 Translation to JVM bytecode
Figure 10 shows a simple Clojure program in which --main

calls foo, foo calls bar, and bar prints “Hello, World!”. The
Clojure compiler translates each Clojure function into a class
(for convenience, we will refer to such classes as “function
classes” in the discussion below). In the case of our example,
function classes hello.core$foo and hello.core$bar are
generated. Each such class defines a method doInvoke()

that contains code corresponding to the original function in
the Clojure source code, and a method getRequiredArity()

that returns its number of required arguments. We will use
Figure 11, which shows some of the bytecodes produced
by the Clojure compiler for the program of Figure 10, to
illustrate how a typical function call such as the one from
foo to bar is translated:

1) hello.core$foo.doInvoke() calls IFn.invoke(). This
call (labeled 1 in the figure) dynamically dispatches to
RestFn.invoke() (the interface IFn and the class RestFn
are both part of the Clojure runtime library).

2) RestFn.invoke() performs some bookkeeping, includ-
ing a call to getRequiredArity() (labeled 2) on the
object representing the target function.

3) Lastly, RestFn.invoke() calls doInvoke() (labeled 3)
on the object representing the target function, which
represents the actual method body of the callee bar.

In the static initializer of class hello.core, which con-
tains the main() method for the compiled program, code is
dynamically loaded by calling RT.var(‘‘clojure.core’’,

‘‘load’’).invoke(‘‘hello.core’’). The “hello.core” ar-
gument is ultimately used as a classname by the Clojure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 14

class hello.core$foo {

 public getRequiredArity() {
 ...
 }

 public Object doInvoke(…){
 ...
 invokeinterface IFn.invoke(…)
 ...
 }

}

class hello.core$bar {

 public getRequiredArity() {
 return 0;
 }

 public Object doInvoke(…){
 ...
 }

}

class RestFN implements IFn {

 public invoke(...){
 ...
 invokevirtual getRequiredArity()
 ...
 invokevirtual doInvoke(...)
 ...
 }

}

1

2

3

Fig. 11. Depiction of the bytecodes produced by the Clojure compiler for the program of Figure 10.

runtime in a call to the Java Reflection API. Then, in hello.

core.main(), a call ((IFn)main__var.get()).applyTo() is
executed to launch the actual program, which ultimately
calls hello.core$_main.doInvoke() using the calling mech-
anism illustrated above.

8.2 Qualitative Analysis
The use of reflection in compiled code will cause most
static analyses to miss some code entirely. Specifically, in
our example, since class hello.core__init (where function-
classes such as hello.core$foo and hello.core$bar are
instantiated) is loaded by reflection, any static analysis that
resolves method calls by keeping track of sets of instanti-
ated classes would omit methods such as hello.core$foo.

doInvoke() from the static call graph. Also, in main(), the
call to applyTo() should resolve to RestFn.applyTo(ISeq),
which is inherited by hello.core$foo and will ultimately
call hello.core$foo.doInvoke(). However, since all func-
tion classes are deemed not instantiated, no implementor of
RestFn is deemed instantiated. As a result, ((IFn)man__var.
get()).applyTo() is resolved to call just a few trivial classes
rather than the actual bodies of the user-defined functions.
Similarly, we found that the translation of module imports
by the Clojure compiler also involves the generation of
reflective code.

8.3 Quantitative Analysis
Table 17 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 18 shows the number of nodes and edges in static
and dynamic call graphs that we constructed for Clojure
versions of the programs from the CLBG suite. All static call
graphs have the same number of nodes and edges because

TABLE 17
Various characteristics of the Clojure CLBG programs.

LOC Bytecode Size (KB) # classes # methods # call sites

BT 22 21.31 16 44 493

FK 43 26.59 15 35 1,124

FA 77 38.15 26 62 1,300

KN 38 76.39 60 146 2,067

MB 32 27.40 18 45 702

NB 89 31.60 20 76 764

PD 30 14.06 9 23 333

RD 30 15.59 9 24 361

RC 20 19.90 12 47 613

SN 15 19.33 13 31 550

TABLE 18
Count of nodes and edges in the static and dynamic call graphs of the

Clojure CLBG programs.

Nodes Edges

S D D\S S\D S D D\S S\D

BT 1,687 2,996 2,541 1,232 10,791 5,664 4,941 10,068

FK 1,687 3,022 2,561 1,226 10,791 5,753 5,019 10,057

FA 1,687 2,989 2,530 1,228 10,791 5,633 4,913 10,071

KN 1,687 3,252 2,770 1,205 10,791 6,312 5,546 10,025

MB 1,687 2,996 2,554 1,245 10,791 5,638 4,942 10,095

NB 1,687 3,066 2,565 1,186 10,791 5,808 5,005 9,988

PD 1,687 3,856 3,368 1,199 10,791 7,907 7,123 10,007

RD 1,687 2,998 2,540 1,229 10,791 5,674 4,945 10,062

RC 1,687 2,929 2,492 1,250 10,791 5,485 4,795 10,101

SN 1,687 2,941 2,497 1,243 10,791 5,504 4,805 10,092

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 15

TABLE 19
Various characteristics of the CHESHIRE and INSTAPARSE Clojure

programs.

LOC Bytecode Size (MB) # classes # methods # call sites

CHESHIRE 385 4.25 3,458 11,868 128,685

INSTAPARSE 9,003 4.14 3,487 11,225 126,678

TABLE 20
Count of nodes and edges in the static and dynamic call graphs of the

CHESHIRE and INSTAPARSE Clojure programs.

Nodes Edges

S D D\S S\D S D D\S S\D

CHESHIRE 1,687 4,369 3,820 1,138 10,791 9,914 8,998 9,875

INSTAPARSE 1,687 4,234 3,690 1,143 10,791 10,413 9,425 9,803

they consist of only a main() method and parts of the
Clojure runtime libraries. The application logic is completely
missing in each case because analyzing complex reflective
code is beyond the state of the art as discussed above. This
makes the analysis extremely unsound. Manual inspection
of the parts of the call graphs corresponding to the runtime
libraries also reveals significant imprecision, which is due to
the complex call-chains introduced during the translation of
function calls that cannot be analyzed precisely by a context-
insensitive analysis.

8.4 Additional Case Studies

In addition to the Clojure CLBG programs, we have studied
CHESHIRE and INSTAPARSE12, two large Clojure applications
that are publicly available on GitHub. CHESHIRE provides a
suite of tools for fast encoding and decoding of JSON and
JSON SMILE (binary JSON format), with added support
for more types and the ability to use custom encoders.
INSTAPARSE is an engine that builds parsers for context-free
grammars. Table 19 shows, for both programs (excluding
library code), the number of lines of source code, as well as
the size of the generated bytecodes, the number of classes,
methods, and call sites in the generated bytecodes.

Similar to our quantitative analysis of the Clojure CLBG
benchmarks, Table 20 shows that the static call graphs for
CHESHIRE and INSTAPARSE have the same number of nodes
and edges. Further investigation shows that those nodes
and edges are the same set of nodes and edges that the
static call graph analysis computes for the Clojure CLBG
programs, except for the nodes and edges involving the
main() method. This result shows that regardless of the size
or complexity of the analyzed Clojure program, the JVM
bytecodes generated for it are not amenable to static call
graph analysis. This is mainly due to heavy use of reflection
and using complex call-chains for function calls.

9 PYTHON

Python [4] is a popular dynamically-typed object-oriented
programming language. In addition to classes and objects,

12. Sources are available from https://github.com/dakrone/
cheshire and https://github.com/Engelberg/instaparse.

53 def foo() :
54 bar()
55 def bar() :
56 print ”Hello, World!”
57 foo()

Fig. 12. A simple Python program.

it supports lists, sets, and dictionaries as built-in data struc-
tures. Other key Python features include lambda expres-
sions, comprehensions, and generators. Jython [32] is a JVM-
based implementation of Python. In our experiments, we
used Jython 2.7-b3, which is compatible with Python 2.7.

9.1 Translation to JVM bytecode

Figure 12 shows a small Python program that we will use to
illustrate how Jython translates Python source code to JVM
.class files. The program declares two functions, foo() and
bar(). The program calls foo() on line 57, foo() calls bar()

on line 54, which in turns prints “hello world” on line 56.
For this program, the Jython compiler generates a class
hello$py containing the main application logic. In general,
each function call in the Python source code is mapped to
a sequence of method calls in the generated bytecode. For
example, for the call on line 54, the following sequence is
generated:

1) hello$py.foo$1() calls PyObject.__call__(), a
method in the Jython runtime libraries.

2) PyObject.__call__() invokes another library method,
PyCode.call(), which is dynamically dispatched to
PyBaseCode.call().

3) PyBaseCode.call() invokes another call() method in
the same class that dispatches to an overriding defini-
tion in PyTableCode.

4) PyTableCode.call() invokes hello$py.

call_function() in the class containing the translated
application functions.

5) hello$py.call_function() contains a switch statement
in which each branch calls one of the application func-
tions depending on the value of its first parameter, fid.
The value of fid originates from an instance field.

Figure 13 shows the relevant bytecodes produced by
the Jython compiler for the program of Figure 12. In
this figure, the previous five calls are visualized by the
correspondingly-annotated arrows.

9.2 Qualitative Analysis

Suppose we want to construct a call graph for the
program of Figure 12 by analyzing the bytecodes gen-
erated for it by the Jython compiler. As mentioned,
hello$py.call_function() calls each of f$0(), foo$1(), and
bar$2(), which correspond to the top-level code and the
functions foo() and bar() in the Python source code. For
any other method call in the program (e.g., the call to foo()

from top-level code), a similar chain of call edges exists
that includes hello$py.call_function(). Consequently, ev-
ery call site in a Python source file is translated into a chain
of method calls that involves hello$py.call_function(),

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 16

class hello$py extends PyFunctionTable ... {
 public PyObject f$0(...){
 ...
 invokevirtual PyObject.__call__(...)
 ...
 }
 public PyObject foo$1(...){
 ...
 invokevirtual PyObject.__call__(...)
 ...
 }
 public PyObject bar$2(...){
 ...
 invokevirtual PyObject.__call__(...)
 ...
 }
 public PyObject call_function(fid, ...){
 ...
 switch(fid){
 invokevirtual f$0(...)
 invokevirtual foo$1(...)
 invokevirtual bar$2(...)
 }
 }

public static void main(String[] args){
 ...
 }
}

class PyObject ... {
 public PyObject __call__(...){
 ...
 invokevirtual PyCode.call(...)
 ...
 }
}

class PyBaseCode extends PyCode {
 public PyObject call(...){
 ...
 invokevirtual PyBaseCode.call(...)
 ...
 }
}

class PyTableCode extends PyBaseCode {
 ...
 int func_id;
 ...
 public PyObject call(...){
 ...
 invokevirtual PyFunctionTable.
 call_function(func_id, ...)
 ...
 }
}

1
2

3

4

5

Fig. 13. Depiction of the bytecodes produced by the Jython compiler for the program of Figure 12.

TABLE 21
Various characteristics of the Python CLBG programs.

LOC Bytecode Size (KB) # classes # methods # call sites

BT 37 2.92 1 8 183

FK 47 3.01 1 7 227

FA 68 4.44 1 12 401

KN 29 4.31 1 12 277

MB 106 2.85 1 7 157

NB 110 4.93 1 11 541

PD 33 2.51 1 6 157

RD 53 3.24 1 8 145

RC 19 3.16 1 9 130

SN 111 3.05 1 11 219

which calls every method corresponding to a function in the
same Python file.13

Based on this observation, it is difficult to see how a
bytecode-based analysis of the JVM bytecodes produced by
Jython could compute a useful call graph. A precise static
analysis would need to employ many levels of call-string
context-sensitivity. It would also need to reason about heap-
allocated objects and values, which is beyond the current
state-of-the-art. Therefore, we conclude that generating pre-
cise call graphs from JVM bytecodes produced by Jython
is infeasible. Soundness is compromised for similar rea-
sons: all methods in imported modules are missing because

13. Jython generates a separate class for each Python source file, each
with its own call_function() method.

TABLE 22
Count of nodes and edges in the static and dynamic call graphs of the

Python CLBG programs.

Nodes Edges

S D D\S S\D S D D\S S\D

BT 10,449 1,761 71 8,759 110,549 3,141 229 107,637

FK 10,403 1,753 61 8,711 100,230 3,095 203 97,338

FA 10,481 3,267 132 7,346 110,739 6,675 406 104,470

KN 10,465 4,790 702 6,377 106,949 10,702 1,614 97,861

MB 10,444 1,770 75 8,749 107,851 3,148 233 104,936

NB 10,465 1,792 70 8,743 109,564 3,234 224 106,554

PD 10,290 1,736 62 8,616 104,167 3,104 213 101,276

RD 10,335 4,301 525 6,559 92,436 9,899 1,513 84,050

RC 10,377 4,264 304 6,417 95,170 9,819 1,035 86,386

SN 10,418 1,771 91 8,738 102,946 3,194 278 100,030

Jython generates code that relies on reflection to implement
module import.

9.3 Quantitative Analysis
Table 21 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

As Table 22 shows, on average, about 76% of the meth-
ods and about 95% of the edges in the static call graphs
do not occur in the dynamic call graphs. This significant
imprecision mainly arises from the call chains involving
call_function() discussed above. Moreover, features such

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 17

TABLE 23
Various characteristics of the GRAKO and PYBARCODE Python

programs.

LOC Bytecode Size (MB) # classes # methods # call sites

GRAKO 6,682 0.35 53 1,435 32,951

PYBARCODE 1,165 0.24 11 171 4,145

TABLE 24
Count of nodes and edges in the static and dynamic call graphs of the

GRAKO and PYBARCODE Python programs.

Nodes Edges

S D D\S S\D S D D\S S\D

GRAKO 23,606 555 549 23,600 3,690,843 1,057 1,054 3,690,840

PYBARCODE 23,736 93 85 23,728 3,763,699 160 155 3,763,694

as module imports that are implemented using reflection
cause about 6% of the methods and 9% of the edges in the
dynamic call graphs to be absent from the static call graphs.

9.4 Additional Case Studies

In addition to the Python CLBG programs, we have studied
GRAKO and PYBARCODE14, two larger Python applications
that are publicly available on GitHub. GRAKO is a parser
generator for input grammars that are written in a variation
of the extended Backus-Naur form (EBNF). PYBARCODE is
a Python package that provides a convenient way to create
barcodes given their numerical value as input using only
built-in Python libraries. Table 23 shows, for both programs
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 24 shows that the overwhelming majority (more
than 99%) of methods and edges in the static call graphs for
both GRAKO and PYBARCODE do not occur in the dynamic
call graphs. These results are in line with our quantitative
analysis of the Python CLBG benchmarks, showing that
the static call graphs for GRAKO and PYBARCODE are also
significantly imprecise. Similarly, the majority of methods
and edges (more than 91%) in the dynamic call graphs
for GRAKO and PYBARCODE are absent from the static call
graphs, mainly due to the use of reflection and module im-
ports. We did not observe any additional issues in the larger
applications that would further compromise unsoundness
or precision.

10 RUBY

Ruby is a popular object-oriented programming language
for server-side scripting. JRuby [33] is a JVM-based imple-
mentation of Ruby. In our experiments, we used JRuby ver-
sion 1.7.13. Similar to Groovy, the JRuby compiler (jrubyc)
has a flag for enabling the generation of bytecode containing
invokedynamic instructions.

14. Sources are available from https://bitbucket.org/neogeny/
grako/ and https://bitbucket.org/whitie/python-barcode/.

58 def bar
59 print ”Hello, World!\n”
60 end
61 def foo
62 bar
63 end
64 foo

Fig. 14. A simple Ruby program.

10.1 Translation to JVM bytecode
Figure 14 shows a simple Ruby program that defines func-
tions foo and bar, and top-level code that invokes foo. The
function foo calls bar, and bar prints “Hello, World!”.

Jrubyc translates each Ruby source file into a separate
class that defines methods main(), load(), and __file__().
The generated classes contain an additional method for each
function in the Ruby source code.15 For the program of Fig-
ure 14, a class hello with methods method__0$RUBY$bar()

and method__1$RUBY$foo() is generated. The compiler
names the class hello because the Ruby source is in a file
called hello.rb. Each function call in the Ruby source code
is translated to a sequence of method calls in the gener-
ated bytecode. For the call from foo to bar, the following
sequence is generated:

1) method__1$RUBY$foo() invokes org.jruby.runtime.

CallSite.call(), which dynamically dispatches
to org.jruby.runtime.callsite.CachingCallSite.

call().
2) then, CachingCallSite.call() invokes

CachingCallSite.cacheAndCall(), a method in
the same class.

3) CachingCallSite.cacheAndCall() retrieves a Dynamic

Method object from a cache that is maintained at
run time and invokes org.jruby.internal.runtime.

methods.DynamicMethod.call() on that object. This
triggers a sequence of calls to methods in the JRuby run-
time and Java standard libraries that ultimately invokes
a method call() in a class hello$method__0$RUBY$bar

that is generated at run time.
4) Finally, method hello$method__0$RUBY$bar.call() in-

vokes hello.method__0$RUBY$bar().
Figure 15 shows the relevant bytecodes produced by

the JRuby compiler for the program of Figure 14. In the
figure, each of the steps discussed above is visualized using
a correspondingly-labeled arrow.

Enabling the use of invokedynamic follows a similar
approach to that used in Groovy. The code that actually
determines the target method is the same whether that
feature is enabled or not. A static analysis would then suffer
from the same issues we previously discussed in Section 7.

10.2 Qualitative Analysis
The code generated by jrubyc poses serious challenges to
static analysis. First, classes such as hello$method__0$RUBY

$bar are generated at run time. A static analysis is unable

15. In fact, JRuby generates 2 overloaded methods for each function
in the source code, where one performs additional checks before
invoking the other. In our example, only the method that does not
perform argument-checking is used.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 18

class hello extends AbstractScript ... {
 public static IRubyObject __file__(...){
 ...
 invokevirtual CallSite.call(...)
 ...
 }
 public static IRubyObject method__1$RUBY$foo(...){
 ...
 invokevirtual CallSite.call(...)
 ...
 }
 public static IRubyObject method__0$RUBY$bar(...){
 ...
 invokevirtual CallSite.call(...)
 ...
 }
 public IRubyObject load(...){
 ...
 invokestatic __file__(...)
 ...
 }
 public static void main(String[] args){
 ...
 invokevirtual load(...)
 ...
 }
 }

class CachingCallSite ... {
 public IRubyObject call(...){
 ...
 invokevirtual cacheAndCall(...)
 ...
 }

 public IRubyObject cacheAndCall(...){
 ...
 invokevirtual DynamicMethod.call(...)
 ...
 }
}

class hello$method__0$RUBY$bar
 extends DynamicMethod {
 ...
 public IRubyObject call(...) {
 ...
 invokestatic hello.method__0$RUBY$bar(...)
 ...
 }
 ...
}

1

2

3

4

Fig. 15. Depiction of the bytecodes produced by the JRuby compiler for the program of Figure 14.

TABLE 25
Various characteristics of the Ruby CLBG programs (top: without

invokedynamic, bottom: with invokedynamic).

LOC Bytecode Size (KB) # classes # methods # call sites

BT 37 4.61 1 12 4

FK 47 4.10 1 8 4

FA 68 6.63 1 15 4

KN 29 5.31 1 18 4

MB 106 8.43 1 43 4

NB 110 7.61 1 18 4

PD 33 3.18 1 6 4

RD 53 5.47 1 14 4

RC 19 3.58 1 10 4

SN 111 8.41 1 46 4

LOC Bytecode Size (KB) # classes # methods # call sites

BT 37 5.04 1 12 4

FK 47 4.67 1 8 4

FA 68 6.88 1 15 4

KN 29 5.65 1 18 4

MB 106 9.21 1 43 4

NB 110 8.03 1 18 4

PD 33 3.52 1 6 4

RD 53 5.57 1 14 4

RC 19 3.77 1 10 4

SN 111 9.27 1 46 4

to reason about the behavior of such classes. Therefore,
the analysis will miss calls to methods such as hello.

method__0$RUBY$bar(), which renders the computed call
graph unsound.

Furthermore, CachingCallSite.call() and Dynamic

TABLE 26
Count of nodes and edges in the static and dynamic call graphs of
Ruby CLBG programs (top: without invokedynamic, bottom: with

invokedynamic).

Nodes Edges

S D D\S S\D S D D\S S\D

BT 14,208 7,015 2,679 9,872 73,685 15,302 8,077 66,460

FK 14,139 6,956 2,667 9,850 73,373 15,165 8,037 66,245

FA 14,187 7,115 2,734 9,806 73,471 15,834 8,506 66,143

KN 14,212 7,224 2,773 9,761 73,620 15,877 8,440 66,183

MB 14,126 7,382 2,943 9,687 73,400 16,757 9,209 65,852

NB 14,210 7,054 2,679 9,835 73,613 15,638 8,312 66,287

PD 14,091 6,846 2,672 9,917 73,172 14,860 8,001 66,313

RD 14,206 7,118 2,749 9,837 73,477 15,589 8,323 66,211

RC 14,162 7,047 2,722 9,837 73,472 15,393 8,198 66,277

SN 14,135 7,079 2,738 9,794 73,430 16,061 8,753 66,122

Nodes Edges

S D D\S S\D S D D\S S\D

BT 14,128 7,087 2,744 9,785 73,308 15,629 8,450 66,129

FK 14,116 7,071 2,724 9,769 73,265 15,517 8,295 66,043

FA 14,129 7,123 2,739 9,745 73,280 16,157 8,791 65,914

KN 14,129 7,179 2,760 9,710 73,303 16,212 8,805 65,896

MB 14,095 7,408 2,942 9,629 73,265 17,175 9,562 65,652

NB 14,117 7,124 2,755 9,748 73,286 15,982 8,692 65,996

PD 14,056 6,954 2,750 9,852 73,046 15,105 8,224 66,165

RD 14,090 7,137 2,795 9,748 73,112 15,807 8,638 65,943

RC 14,099 7,126 2,771 9,744 73,235 15,720 8,510 66,025

SN 14,093 7,143 2,770 9,720 73,257 16,475 9,115 65,897

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 19

TABLE 27
Various characteristics of the CHUNKYPNG and PSD.RB Ruby programs.

LOC Bytecode Size (MB) # classes # methods # call sites

CHUNKYPNG 4,516 0.32 48 1,770 192

PSD.RB 5,638 0.61 140 2,750 560

Method.call() are invoked for every call in the source
code. These methods, in turn, invoke all methods cor-
responding to source code functions such as hello.

method__0$RUBY$bar() and hello.method__1$RUBY$foo().
As with Jython, precise static analysis would need many
levels of context sensitivity and it would need to understand
heap-allocated cached objects; this is beyond the current
state of the art. Therefore, we conclude that generating
precise call graphs from JVM bytecodes produced by JRuby
is infeasible.

In Ruby, the require construct is used to import code
from another file. JRuby implements this idiom by dynam-
ically loading a script from a file using a ClassLoader,
and then relying on the mechanisms described above to
interpret these scripts. In general, static analysis is incapable
of precisely accounting for code interpreted at run time in
this way, resulting in additional unsoundness.

10.3 Quantitative Analysis
Table 25 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 26 shows the sizes of dynamic and static call
graphs for the JRuby benchmarks. The numbers are very
similar across all benchmarks because the large JRuby li-
brary contains overwhelmingly more methods than the
benchmark programs themselves. As discussed above, the
static call graphs miss large numbers of nodes and edges
from the dynamic call graphs, primarily because methods
in classes generated at run time are not known to the static
analysis.

The computed call graphs also exhibit significant im-
precision: in each benchmark, approximately 70% of the
methods and 90% of the call edges in the static call graph
are absent from the dynamic call graph. This imprecision
occurs overwhelmingly in the JRuby standard library. Due
to the library’s complex structure, any current analysis
would find almost all of the standard library to be reachable,
although only a relatively small fraction is used at run time
by our subject programs. As expected, the results are very
similar regardless whether or not the use of invokedynamic
is enabled.

10.4 Additional Case Studies
In addition to the Ruby CLBG programs, we have attempted
to study CHUNKYPNG and PSD.RB16, two larger Ruby appli-
cations that are publicly available on GitHub. CHUNKYPNG
is a tool that provides read and write functionalities to
PNG images in pure Ruby. PSD.RB is a Ruby-based general

16. Sources are available from https://github.com/wvanbergen/
chunky png and https://github.com/layervault/psd.rb.

purpose Adobe Photoshop17 file parser. Table 27 shows,
for both programs (excluding library code), the number of
lines of source code, as well as the size of the generated
bytecodes, the number of classes, methods, and call sites in
the generated bytecodes.

Unfortunately, the ahead-of-time build system for JRuby
seems not to support building such large codebases. We
were not able to get the JRuby runtime to execute without
depending on dynamically interpreting a large number of
ruby scripts. Such setup makes it almost impossible to
perform any reasonable comparison between static and
dynamic call graphs.

11 PERFORMANCE

Reflection- and indirection-heavy implementations hamper
static analysis, and plausibly might harm performance as
well. To observe whether any correlations exist between
compilation strategies and run-time performance, we inves-
tigate the performance of the bytecode generated by the
compilers for the various languages on the CLBG bench-
marks. As a baseline for comparison, we evaluated the Java
versions as well. We evaluate the performance in terms of
running time and memory usage rate.

11.1 Setup
We used the Java Microbenchmarking Harness (JMH)
tool [34] that ships with the JDK to build, run, and analyze
the CLBG benchmarks written in Java and the other lan-
guages under study that target the JVM. Our experimental
setup uses JMH 1.12 with 30 warmup iterations and 30 mea-
surement iterations. However, we had to exclude the pro-
grams KN, MB, RD, and RC from the Clojure benchmark,
because they use program constructs that eventually call
System.exit() in the Java runtime library. This call causes
JMH to prematurely shutdown the JVM which causes the
execution to stop before reporting any measurements. Simi-
larly, we had to exclude the programs NB, PD, and RD from
the benchmark for JRuby with invokedynamic. The code for
these programs ends up re-initializing constant values in
the generated bytecode when the flag for invokedynamic

in the JRuby compiler is enabled, causing the JVM to
throw a runtime exception, which in turn prevents JMH
from reporting its measurements. Including these CLBG
programs would require editing their code to avoid those
runtime errors, which might invalidate the results of this
experiment. Therefore, we opted for excluding them from
the performance evaluation.

Using JMH, we measure the running time using the aver-
age running time that JMH reports for each program. For the
memory consumption, we use the gc.alloc.rate.norm
output from JMH, which measures the normalized number
of allocated bytes per operation for each program.

11.2 Results
Figures 16–17 present the running times and memory usage
rates, respectively, in logarithmic scale, normalized to that of
Java, for each of the 10 benchmark programs per language.

17. http://www.adobe.com/ca/products/photoshop.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 20

No
rm

al
ize

d
Pr

og
ra

m
 R

un
ni

ng
 T

im
e

0.01

0.1

1

10

100

1,000

10,000

Java Scala Kawa Clojure Groovy-indy Groovy OCaml Jython JRuby-indy JRuby

Java

BT FK FA KN MB NB PD RD RC SN

Fig. 16. The program running time, in logarithmic scale, normalized to that of Java, of the 10 CLBG benchmark programs.

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Ra
te

0.01

0.1

1

10

100

1,000

10,000

Java Scala Kawa Clojure Groovy-indy Groovy OCaml Jython JRuby-indy JRuby

Java

BT FK FA KN MB NB PD RD RC SN

Fig. 17. The memory usage rate, in logarithmic scale, normalized to that of Java, of the 10 CLBG benchmark programs.

Across all the languages that we have studied, Scala
generates JVM bytecodes with the best performance in
terms of running time and memory usage. In fact, the Scala
bytecodes run 1.4× faster than their Java counterparts, while
using 1.7× more memory. This discrepancy in running time
is primarily due to the benchmarks SN and KN. Our manual
investigation shows that SN is approximately 15× slower
in Java compared to Scala, which contributes the most to
this discrepancy. This is because the Java version is multi-
threaded, while the Scala version is single-threaded. Given
the 32-core machine that we ran our experiments on, the
synchronization barrier for the Java version is very expen-
sive, and is roughly 15× the cost of the real computation
that the benchmark actually does. KN exhibits the same
behaviour, but to a smaller extent where the synchronization
barrier causes the Java version to be approximately 3×
slower than its Scala counterpart.

Surprisingly, the JVM bytecodes generated by
dynamically-typed Kawa have the same performance
as Java with respect to running time, while using an
average of 4.3× more memory. This performance is better
than that of the JVM bytecodes generated by OCaml, the
only other statically-typed language in our study. When
compared to Java, OCaml generates JVM bytecodes that
run 10× slower, and use 10× more memory.

Another surprising observation is that dynamically-
typed Clojure generates JVM bytecodes that run faster than
their OCaml counterparts. This may be attributed to the
Clojure JVM bytecodes being more amenable to the opti-
mizations that the Java Just-in-Time (JIT) compiler performs
at runtime. On the other hand, the Clojure JVM bytecodes
use 23× more memory than Java, which is more than double
the memory than the OCaml JVM bytecodes use.

The JVM bytecodes generated by all the other
dynamically-typed languages have worse performance with
respect to running time and memory usage. In particu-
lar, JRuby JVM bytecodes run 136× slower and use 232×
more memory than Java. Compiling Ruby scripts with the
invokedynamic flag turned on improves the performance for
the JRuby JVM bytecodes as they run 101× slower and use
127× more memory than Java. On the other hand, using
invokedynamic doubles the memory usage of the Groovy
JVM bytecodes without any significant win with respect to
the running time.

The results of this experiment show that there is a
strong correlation between runtime performance and the
extent to which the generated JVM bytecode is amenable to
static analysis. This suggests that efforts by language imple-
mentors that aim to improve the run-time performance of
generated code may benefit other applications of bytecode-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 21

based program analysis as well.

12 DISCUSSION AND THREATS TO VALIDITY

12.1 Discussion

For soundness of analysis, the systems that we studied
mostly fall into two classes. The Kawa, Scala and OCaml-
Java systems produced sound call graphs in our experi-
ments, which we believe is due to relatively straightforward
translations that make judicious use of some features of
recent Java versions such as MethodHandles. MethodHan-
dles encode reflective accesses in a way that is directly
readable from the bytecode. This allows analysis to soundly
and precisely model which methods are denoted, which,
in turn, enables sound construction of call graphs that use
these features. On the other hand, the other languages make
heavy use of string-based reflection and frequently store
and retrieve these strings to and from the heap. This makes
good approximations problematic, and results in unsound
call graphs. We experimented with versions of some lan-
guages that employ invokedynamic; these implementations
employed similar string-based techniques and yielded sim-
ilarly unsound results.

12.2 Language Features

A critical reader might argue that the programs studied in
this paper are small, that they do not cover the full range
of each language’s features, and that they are perhaps not
representative of real-world programs. We do not consider
the above considerations to be serious reasons for concern,
because the primary conclusions of our study (i.e., whether
soundness or imprecision occurs for each language under
consideration) are evident from the manual analysis of
small example programs, and supported by our quantitative
experiments with the CLBG programs.

To further address the concern about the CLBG pro-
grams being fairly small, we conducted, for each of the
languages under consideration (except Ruby), additional
experiments on two larger subject programs. For these pro-
grams, we performed the same quantitative experiments as
for the CLBG programs. Moreover, in a detailed qualitative
assessment, we determined whether additional issues arose
in these larger programs that comprise soundness or pre-
cision. From this assessment, we conclude that the larger
programs exhibit the same issues as the smaller programs
and do not fundamentally alter our conclusions.

12.3 Code Coverage

In general, computing precise static call graphs is undecid-
able, and in this paper, we have used dynamic call graphs
to estimate the precision of static call graphs. However, a
dynamic call graph provides an under-approximation of
a precise static call graph, and the reader may wonder if
code coverage is reasonable. To address this concern, we
measured basic block coverage. On average, across all the
languages under consideration, the program input used
to run the CLBG benchmark suite provides a basic block
coverage of 87%, which is quite high.

12.4 Generality of Results
The choice of WALA and its 0-CFA analysis does not overly
bias our results as the analysis challenges we found are
more fundamental. For example, the qualitative studies we
have conducted show that dynamic translation schemes
such as run-time code generation and reflection potentially
cripple any bytecode-based static call graph analysis, not
just WALA’s.

12.5 Applicability of Results
We chose to study call graph construction because call
graphs have many applications in software engineering,
including bug-finding (see e.g., [13]), detecting security
vulnerabilities (see e.g., [14]), IDE features such as code
navigation (see e.g., [15], and application extraction and op-
timization (see e.g., [16], [17]). Furthermore, call graphs are
deeply connected to pointer analysis, another fundamental
analysis technology [35]. Hence, our results indicate that
bytecode-based program analysis could be used for a range
of applications on a range of languages.

12.6 Ephemeral Results
We have used multiple versions of the language implemen-
tations over the course of the study, with no major impact.
Even the use of the invokedynamic instruction appears to
have little or no impact on analysis results. In fact, Figure 17
shows that using invokedynamic leads to worse memory
performance for the language implementation for Groovy.
We therefore expect that the results of our study will still
hold for future versions of these systems.

13 RELATED WORK

In this section, we discuss several categories of related work.

13.1 Empirical Studies
Reif et al. [36] study how unsoundness arises in call graph
construction algorithms for Java due to a number of features
and mechanisms, including: the use of reflection, unsafe
native APIs, serialization, lambdas and method references,
and default methods. In their study, they craft example
programs that exercise each of these features and deter-
mine if loss of soundness is observed when analyzing
these programs using existing implementations of call graph
construction algorithms in SOOT [10] and WALA [11]. The
study concludes that WALA provides better support than
SOOT for trivial uses of reflection (e.g., using string literals)
and Java 8 features such as lambdas, but that both WALA
and SOOT lose soundness when serialization or the unsafe
native APIs are used.

Sui et al. [37] present a similar study that investigates
how the soundness of call graph construction algorithms
is compromised by dynamic language features such as
reflection and dynamic loading, proxies, serialization, the
invokedynamic instruction, and the unsafe native API. They
define a micro-benchmark consisting of a set of programs
that exercise each of the dynamic features. Each program
specifies its expected execution behavior using Java’s anno-
tation mechanism. Specifically, annotations specify whether

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 22

methods are always executed, never executed, or some-
times executed (which may happen if the execution of
methods is platform-dependent). Sui et al. conduct a study
where they apply call graph construction algorithms from
the SOOT [10], WALA [11], and DOOP [9] frameworks
to their benchmark, and report that, while none of the
frameworks handles all the dynamic features soundly in
all cases, each framework appears to have some unique
strengths. In particular, WALA and DOOP [38], [39] support
invokedynamic and proxies, and SOOT relies on Tamiflex to
analyze reflective code. In contrast to these studies, which
consider the challenges posed by dynamic language features
in the context of synthetic benchmarks, our work has fo-
cused on identifying and analyzing the challenges posed to
static analysis that arise in the JVM bytecodes produced by
compilers for 7 programming languages on programs taken
from an existing benchmark suite and from open-source
repositories.

Most studies of non-Java JVM-hosted languages focus on
the dynamic behavior of bytecode from the point of view of
a JVM that executes it. Li et al. [40] studied JVM bytecode
generated by Scala, Clojure, Jython, and JRuby for the CLBG
programs. They measured the diversity of bytecode instruc-
tion sequences executed, the sizes of methods, the depths
of the run time stack, the hotness distribution of methods
and basic blocks, the sizes and lifetimes of objects, and the
amount of boxing of primitive types. Sarimbekov et al. [41]
studied Clojure, Jython, and JRuby versions of the CLBG
programs. They measured polymorphic calls, immutability
of fields, objects, and classes, lifetimes of objects, amount of
memory zeroing, and the number of evaluations of identity
hash codes. Sewe et al. [27] introduced a benchmark suite
for Scala similar to the DaCapo suite [42] for Java and
compare the dynamic behavior of these programs to that
of the DaCapo Java programs. The use of dynamic features
has also been studied for languages that are not normally
compiled to JVM bytecode. Richards et al. [43], [44] studied
the use of dynamic features in JavaScript, especially the
eval construct. Hills et al. [45] studied the use of various
features in PHP programs, including eval. In contrast to
these studies, our work examines JVM bytecode from a
static analysis perspective.

13.2 Multilingual Virtual Machines

The translation of various programming languages to byte-
code-based platforms has received considerable attention.
Several works consider the compilation of Scala to JVM
bytecode [46], [47], [48], [49]. Other languages, in addition
to those that were already discussed, include Star [50],
Pizza [51], [52], and even machine language code [53]. The
Microsoft Common Language Runtime (CLR) was designed
from the outset to support multiple source languages, in-
cluding C#, C++, and Visual Basic, and has since been used
as the target of many others. Gordon et al. [54] presented
a type system for the CLR Intermediate Language (CIL).
Bebenita et al. [55] used CIL as the bytecode language for a
tracing just-in-time (JIT) compiler specifically designed for
dynamic scripting languages like JavaScript. Recent work
has adapted the virtual machine more deeply to support
new languages. Castanos et al. [56] modified an existing

JIT compiler to exploit dynamic characteristics of Python
for improved performance. Würthinger et al. [57] built a
virtual machine that allows custom source front-ends for
a variety of languages. This work laid the foundation for
the later development of the GraalVM [58], a universal
virtual machine that supports running JavaScript, Python,
Ruby, R, in addition to JVM-hosted languages. The custom
front-ends in GraalVM, which are typically implemented on
top of the Truffle language implementation framework, in-
terpret, profile, and optionally transform source programs.
The system later partially evaluates these interpreters to
generate machine code. Savrun-Yeniceri et al. [59] consider
forms of threaded code generation to speed up JVM-hosted
interpreters, by reducing indirect jumps to improve branch
prediction. While these approaches help improve the run-
time performance of executing dynamic languages, they still
do not influence how such languages are amenable to static
analysis.

13.3 Custom Data Structures

Xu and Rountev evaluated a regression test selection analy-
sis for AspectJ [60]. They found the analysis to be extremely
imprecise when based on call graphs constructed from byte-
code generated from AspectJ code. To improve precision,
they introduced the interaction graph, a structure similar to
a call graph that explicitly models AspectJ features, and
evaluated an analysis for constructing such graphs from
AspectJ source code [61].

14 CONCLUSIONS AND FUTURE WORK

Getting free program analysis infrastructure for a wide
range of languages is an attractive prospect, and we have
investigated whether JVM bytecode based analysis for Java
can be used on other languages that compile to bytecode.
We show that this is indeed possible for a wide range
of statically-typed and dynamically-typed languages, based
on our results for functional Scheme, object-oriented Scala,
and polymorphic OCaml. Call graphs for these languages
are as sound as for Java, and present similar challenges
for obtaining precision. This suggests that bytecode-based
analysis could serve as a useful implementation vehicle for
applications such as bug-finding, security analysis, and code
navigation in IDEs for languages where program analysis
infrastructure is not readily available otherwise.

However, we demonstrate that the implementation of
the bytecode generation is crucial, and complex, reflection-
heavy implementations prevent good analysis for Groovy,
Clojure, Python, and Ruby. We also show performance re-
sults indicating that these implementations tend to result in
poor performance as well.

Overall, the results are encouraging in that high-quality
JVM-based implementations can benefit not only from the
JVM’s mature implementation, but from its associated ma-
ture program analysis infrastructure as well. While the
experiments in this paper focus on call graph construction,
we consider our conclusions to be broadly applicable to
bytecode-based interprocedural static analyses, because call
graphs are a prerequisite for most static analyses.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 23

When designing new programming languages and im-
plementing compilers for them, designers consider and bal-
ance many different objectives for each particular language.
The ability to analyze compiled code using existing JVM
analysis tools can be one such objective. The results of our
study show how easily the various possible compilation
strategies can be analyzed by existing JVM analysis tools.
Thus, they provide the data that language implementers
need to balance the goal of analyzability against other
objectives in the implementation of each new programming
language. The data can be used to initiate discussion and
future research about the relative benefits and drawbacks of
various compilation strategies in the context of specific new
programming languages.

ACKNOWLEDGMENTS

We are grateful to Laurie Hendren for helpful suggestions.
This research was supported by the Natural Sciences and
Engineering Research Council of Canada and the Ontario
Ministry of Research and Innovation. This research was also
supported in part by National Science Foundation grant
CCF-1715153 and by Office of Naval Research (ONR) grant
N00014-17-1-2945.

REFERENCES

[1] Stuart Halloway and Aaron Bedra. Programming Clojure (2. ed.).
Pragmatic Bookshelf, 2012.

[2] Kenneth Barclay and John Savage. Groovy programming: an intro-
duction for Java developers (1. ed.). Morgan Kaufmann, 2006.

[3] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real-World
OCaml: Functional Programming for the Masses (1. ed.). O’Reilly,
2013.

[4] Mark Lutz. Learning Python (5. ed.). O’Reilly, 2013.
[5] Dave Thomas, Andy Hunt, and Chad Fowler. Programming Ruby

1.9 & 2.0: The Pragmatic Programmer’s Guide (4. ed.). Pragmatic
Bookshelf, 2013.

[6] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala
(2. ed.). Artima Press, 2011.

[7] R. Kent Dybvig. The Scheme Programming Language (4. ed.). MIT
Press, 2009.

[8] Chord: A program analysis platform for Java. Available from http:
//www.cc.gatech.edu/∼naik/chord.html.

[9] Martin Bravenboer and Yannis Smaragdakis. Strictly
declarative specification of sophisticated points-to analy-
ses. In OOPSLA, pages 243–262. ACM, 2009.

[10] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren,
Patrick Lam, Patrice Pominville, and Vijay Sundaresan.
Optimizing Java Bytecode Using the Soot Framework: Is
It Feasible? In CC, pages 18–34, 2000.

[11] T.J. Watson Libraries for Analysis WALA. Available from
http://wala.sourceforge.net/.

[12] Michael Eichberg and Ben Hermann. A software prod-
uct line for static analyses: the OPAL framework. In
SOAP@PLDI, pages 2:1–2:6. ACM, 2014.

[13] Julian Dolby, Mandana Vaziri, and Frank Tip. Finding
bugs efficiently with a SAT solver. In Ivica Crnkovic
and Antonia Bertolino, editors, Proceedings of the 6th joint
meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2007, Dubrovnik, Croatia, September
3-7, 2007, pages 195–204. ACM, 2007.

[14] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Srid-
haran, and Omri Weisman. TAJ: effective taint analysis
of web applications. In Michael Hind and Amer Diwan,
editors, Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009, pages 87–97. ACM,
2009.

[15] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian
Dolby, and Frank Tip. Efficient construction of approx-
imate call graphs for JavaScript IDE services. In 35th
International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 752–761,
2013.

[16] Peter F. Sweeney and Frank Tip. Extracting library-based
object-oriented applications. In ACM SIGSOFT Symposium
on Foundations of Software Engineering, an Diego, California,
USA, November 6-10, 2000, Proceedings, pages 98–107, 2000.

[17] Julian Dolby and Andrew A. Chien. An automatic object
inlining optimization and its evaluation. In Monica S. Lam,
editor, Proceedings of the 2000 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
Vancouver, Britith Columbia, Canada, June 18-21, 2000, pages
345–357. ACM, 2000.

[18] The Computer Language Benchmarks Game. Available
from http://benchmarksgame.alioth.debian.org.

[19] Olin Shivers. Control-flow analysis in scheme. In PLDI,
pages 164–174, 1988.

[20] Ondrej Lhoták. Comparing call graphs. In PASTE, pages
37–42, 2007.

[21] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati,
and Mira Mezini. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In
Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, pages 241–250, 2011.

[22] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,
Ondrej Lhoták, José Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Mvller, and
Dimitrios Vardoulakis. In defense of soundiness: a mani-
festo. Communications of the ACM, 58(2):44–46, 2015.

[23] The OPAL Project. Available from http://www.
opal-project.de/DeveloperTools.html.

[24] Soot - A Java optimization framework. Available from
https://github.com/sable/soot.

[25] The Kawa Scheme language. Available from http://www.
gnu.org/software/kawa/.

[26] Karim Ali, Marianna Rapoport, Ondrej Lhoták, Julian
Dolby, and Frank Tip. Constructing call graphs of Scala
programs. In ECOOP, pages 54–79, 2014.

[27] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Wal-
ter Binder. Da capo con Scala: design and analysis of a
Scala benchmark suite for the Java Virtual Machine. In
OOPSLA, pages 657–676, 2011.

[28] Xavier Clerc. OCaml-Java: an ML implementation for the
Java ecosystem. In PPPJ, pages 45–56, 2013.

[29] Ondřej Lhoták and Laurie J. Hendren. Context-Sensitive
Points-to Analysis: Is It Worth It? In CC, pages 47–64, 2006.

[30] Ole Agesen. The Cartesian Product Algorithm: Simple
and precise type inference of parametric polymorphism.
In ECOOP, pages 2–26, 1995.

[31] The Clojure programming language. http://clojure.org/.
[32] Josh Juneau. Polyglot Programmer: Jython 101 –

A Refreshing Look at a Mature Alternative. Ora-
cle Java Magazine, 2013. Available from http://www.
oraclejavamagazine-digital.com.

[33] JRuby: The Ruby programming language on the JVM.
http://jruby.org/.

[34] Code Tools: jmh. Available from http://openjdk.java.net/
projects/code-tools/jmh/.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 24

[35] David Grove and Craig Chambers. A framework for
call graph construction algorithms. ACM Transactions on
Programming Languages and Systems, 23(6):685–746, 2001.

[36] Michael Reif, Florian Kübler, Michael Eichberg, and Mira
Mezini. Systematic evaluation of the unsoundness of call
graph construction algorithms for Java. In Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA
2018, Amsterdam, Netherlands, July 16-21, 2018, pages 107–
112, 2018.

[37] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and
Amjed Tahir. On the soundness of call graph construction
in the presence of dynamic language features - A bench-
mark and tool evaluation. In Programming Languages and
Systems - 16th Asian Symposium, APLAS 2018, Wellington,
New Zealand, December 2-6, 2018, Proceedings, pages 69–88,
2018.

[38] George Fourtounis, George Kastrinis, and Yannis Smarag-
dakis. Static analysis of Java dynamic proxies. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, pages 209–220, 2018.

[39] George Fourtounis and Yannis Smaragdakis. Deep static
modeling of invokedynamic. In 33rd European Conference
on Object-Oriented Programming, ECOOP 2019, July 15-19,
2019, London, United Kingdom., pages 15:1–15:28, 2019.

[40] Wing Hang Li, David Robert White, and Jeremy Singer.
JVM-hosted languages: they talk the talk, but do they walk
the walk? In PPPJ, pages 101–112, 2013.

[41] Aibek Sarimbekov, Andrej Podzimek, Lubomir Bulej, Yudi
Zheng, Nathan Ricci, and Walter Binder. Characteristics of
dynamic JVM languages. In VMIL, pages 11–20, 2013.

[42] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, As-
jad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump,
Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovic, Thomas VanDrunen, Daniel von Dincklage,
and Ben Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA,
pages 169–190, 2006.

[43] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan
Vitek. An analysis of the dynamic behavior of JavaScript
programs. In PLDI, pages 1–12, 2010.

[44] Gregor Richards, Christian Hammer, Brian Burg, and Jan
Vitek. The eval that men do - a large-scale study of the use
of eval in JavaScript applications. In ECOOP, pages 52–78,
2011.

[45] Mark Hills, Paul Klint, and Jurgen J. Vinju. An empirical
study of PHP feature usage: a static analysis perspective.
In ISSTA, pages 325–335, 2013.

[46] Michel Schinz. Compiling Scala for the Java Virtual Machine.
PhD thesis, EPFL, 2005.

[47] Iulian Dragos. Compiling Scala for Performance. PhD thesis,
IC, Lausanne, 2010.

[48] Gilles Dubochet and Martin Odersky. Compiling struc-
tural types on the JVM: a comparison of reflective and gen-
erative techniques from Scala’s perspective. In Ian Rogers,
editor, Proceedings of the 4th workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 34–41, 2009.

[49] Iulian Dragos and Martin Odersky. Compiling generics
through user-directed type specialization. In Proceedings
of the 4th workshop on the Implementation, Compilation, Opti-
mization of Object-Oriented Languages and Programming Sys-
tems, pages 42–47. ACM, 2009.

[50] Frank McCabe and Michael Sperber. Feel different on the
Java platform: the star programming language. In PPPJ,
pages 89–100, 2013.

[51] Martin Odersky and Philip Wadler. Pizza into Java: Trans-
lating theory into practice. In POPL, pages 146–159, 1997.

[52] Martin Odersky, Enno Runne, and Philip Wadler. Two
ways to bake your Pizza - translating parameterised types
into Java. In Mehdi Jazayeri, Rüdiger Loos, and David R.
Musser, editors, Generic Programming, volume 1766 of Lec-
ture Notes in Computer Science, pages 114–132. Springer,
1998.

[53] Alexander Yermolovich, Andreas Gal, and Michael Franz.
Portable execution of legacy binaries on the Java Virtual
Machine. In PPPJ, pages 63–72, 2008.

[54] Andrew D. Gordon and Don Syme. Typing a multi-
language intermediate code. In POPL, pages 248–260, 2001.

[55] Michael Bebenita, Florian Brandner, Manuel Fähndrich,
Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann,
and Herman Venter. Spur: a trace-based JIT compiler for
CIL. In OOPSLA, pages 708–725, 2010.

[56] José G. Castaños, David Edelsohn, Kazuaki Ishizaki, Priya
Nagpurkar, Toshio Nakatani, Takeshi Ogasawara, and
Peng Wu. On the benefits and pitfalls of extending a stat-
ically typed language JIT compiler for dynamic scripting
languages. In OOPSLA, pages 195–212, 2012.

[57] Thomas Würthinger, Christian Wimmer, Andreas Wöß,
Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor
Richards, Doug Simon, and Mario Wolczko. One VM to
rule them all. In OOPSLA Onward!, pages 187–204, 2013.

[58] GraalVM - Run Programs Faster Anywhere. Available
from https://www.graalvm.org.

[59] Gülfem Savrun-Yeniçeri, Wei Zhang, Huahan Zhang, Eric
Seckler, Chen Li, Stefan Brunthaler, Per Larsen, and
Michael Franz. Efficient hosted interpreters on the JVM.
TACO, 11(1):9, 2014.

[60] Guoqing (Harry) Xu and Atanas Rountev. Regression test
selection for AspectJ software. In ICSE, pages 65–74, 2007.

[61] Guoqing (Harry) Xu and Atanas Rountev. AJANA: a
general framework for source-code-level interprocedural
dataflow analysis of AspectJ software. In AOSD, pages
36–47, 2008.

Karim Ali obtained his PhD degree from the Uni-
versity of Waterloo in 2014. He is an Assistant
Professor in the Department of Computing Sci-
ence at the University of Alberta. His research in-
terests are in programming languages and soft-
ware engineering, particularly in scalability, pre-
cision, and usability of program analysis tools.
His work ranges from developing new theories
for scalable and precise program analyses to
applications of program analysis in security and
Just-in-Time compilers.

Xiaoni Lai obtained an MMath degree from the
University of Waterloo in 2015. She is currently
a Software Engineer at Google, working on
Blink, the web rendering engine of the Chrome
browser.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 25

Zhaoyi Luo obtained an MMath degree from the
University of Waterloo in 2015. He is currently a
Software Engineer at Microsoft, working on the
Azure SQL Database.

Ondřej Lhoták obtained a PhD from McGill Uni-
versity in 2006. He is an Associate Professor in
the D. R. Cheriton School of Computer Science
at the University of Waterloo. His research inter-
ests are in static program analysis, particularly
of object-oriented languages.

Julian Dolby received his PhD degree from the
University of Illinois at Urbana-Champaign in
2000. He has been a Research Staff Member at
IBM’s Thomas J. Watson Research Center ever
since. His research interest include static pro-
gram analysis, software testing and the semantic
web. He has also worked on the Jikes Research
Virtual Machine (Jikes RVM).

Frank Tip received the PhD degree from the
University of Amsterdam in 1995. He is currently
a Professor at the College of Computer and
Information Science at Northeastern University.
His research interests include program analy-
sis, refactoring, test generation, fault localization,
and automated program repair.

