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LLMorpheus: Mutation Testing using Large
Language Models
Frank Tip, Jonathan Bell, Max Schäfer

Abstract—In mutation testing, the quality of a test suite is
evaluated by introducing faults into a program and determining
whether the program’s tests detect them. Most existing ap-
proaches for mutation testing involve the application of a fixed
set of mutation operators, e.g., replacing a “+” with a “-”, or
removing a function’s body. However, certain types of real-world
bugs cannot easily be simulated by such approaches, limiting
their effectiveness. This paper presents a technique for mutation
testing where placeholders are introduced at designated locations
in a program’s source code and where a Large Language Model
(LLM) is prompted to ask what they could be replaced with. The
technique is implemented in LLMorpheus, a mutation testing tool
for JavaScript, and evaluated on 13 subject packages, considering
several variations on the prompting strategy, and using several
LLMs. We find LLMorpheus to be capable of producing mutants
that resemble existing bugs that cannot be produced by StrykerJS,
a state-of-the-art mutation testing tool. Moreover, we report on
the running time, cost, and number of mutants produced by
LLMorpheus, demonstrating its practicality.

Index Terms—mutation testing, Large Language Models

I. INTRODUCTION

MUTATION TESTING is an approach for evaluating the
adequacy of a test suite and is increasingly adopted in

industrial settings [1]–[3]. With mutation testing, an automated
tool repeatedly injects a small modification to the system under
test and executes the test suite on this mutated code. Mutation
testing is premised on the competent programmer hypothesis,
which posits that most buggy programs are quite close to
being correct and that complex faults are coupled with simpler
faults [4], i.e., a test that is strong enough to detect a simple
fault should also be able to detect a more complex one. Hence,
mutation analysis tools typically apply a relatively small set
of mutation operators: replacing constants, replacing operators,
modifying branch conditions, and deleting statements. Studies
have shown that, given two test suites for the same system
under test, the one that detects more mutants (even using only
these limited mutation operators) is likely to also detect more
real faults [5], [6].

However, not all real faults are coupled to mutants due to
the limited set of mutation operators. For example, a fault
resulting from calling the wrong method on an object is
unlikely to be coupled to a mutant, as state-of-the-art mutation
tools do not implement a “change method call” operator.
While a far wider range of mutation operators has been
explored in the literature [7], [8], state-of-the-practice tools
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like Pitest [9], [10], Major [11] and Stryker [12] typically do
not implement them because of the implementation effort re-
quired and, especially, the increased cost of mutation analysis.
Each additional mutation operator will result in more mutants
that must be run and analyzed. Since each mutant must be
evaluated in isolation, this may dramatically increase the time
needed for developers that use the tool. Furthermore, some
mutation operators might not be worthwhile to run, as noted in
documentation from the developer of Pitest: “Although pitest
provides a number of other operators, they are not enabled
by default as they may provide a poorer experience” [13]. An
alternative approach for generating mutants is to use a dataset
of real faults to train a machine learning model to learn how
to inject mutants [14]–[16]. However, the need for developers
to train a model for their project impedes adoption of such
techniques.

Our approach, LLMorpheus, can be viewed as a generaliza-
tion of rule-based mutation techniques [9]–[12] in which the
location of mutations is determined using a set of predefined
rules and where an LLM is asked to suggest a diversity of mu-
tations that introduce buggy behavior at those locations. To this
end, LLMorpheus repeatedly prompts an LLM to inject faults
at designated locations into a code fragment using prompts
that include: (i) general background on mutation testing (ii)
(parts of) a source file in which a single code fragment is
replaced with the word “PLACEHOLDER”, (iii) the original
code fragment that was replaced by the placeholder, and (iv)
a request to replace the placeholder with a buggy code frag-
ment that has different behavior than the original code. After
discarding syntactically invalid suggestions, we use StrykerJS,
a state-of-the-art mutation testing tool for JavaScript that we
modified to apply the mutations suggested by LLMorpheus
instead of applying its standard mutators, classify mutants as
killed, surviving, or timed out, and generate an interactive web
site for inspecting the results.

The effectiveness of our approach hinges on the assump-
tion that LLMs can understand the surrounding context of
the code fragment represented by a PLACEHOLDER well
enough to suggest syntactically valid and realistic buggy code
fragments. To determine whether this assumption holds, we
evaluate LLMorpheus on 13 subject applications written in
JavaScript and TypeScript and measure how many mutants
are generated and how they are classified (killed, survived,
timed-out) using four “open” LLMs for which the train-
ing process is documented (Meta’s codellama-34b-instruct,
codellama-13b-instruct, llama-3.3-70b-instruct and Mistral’s
mixtral-8x7b-instruct) and one proprietary LLM (OpenAI’s
gpt-4o-mini). We manually examine a subset of the surviving
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mutants to determine whether they are equivalent to the orig-
inal source code or if they represent behavioral changes and
contrast the results against mutants generated using StrykerJS’s
standard mutators. The cost of LLMorpheus is assessed by
measuring its running time and the number of tokens used for
prompts and completions. We also report on experiments with
alternative prompts that omit parts of the information encoded
in default prompts and with different “temperature” settings
of an LLM.

For surviving mutants generated using
codellama-34b-instruct, we find that the majority (80%)
reflect behavioral differences and 20% are equivalent
to the original code. Using the codellama-34b-instruct
and codellama-13b-instruct models, results are generally
stable at temperature 0.0 when experiments are repeated,
but the use of higher temperatures yields more variable
results. For mixtral-8x7b-instruct, llama-3.3-70b-instruct, and
gpt-4o-mini models, there is already significant variability
at temperature 0. The default template generally produces
the largest number of mutants and surviving mutants,
and removing different fragments of this prompt degrades
the results to varying degrees. The llama-3.3-70b-instruct
and codellama-34b-instruct LLMs generally produce the
largest number of mutants and surviving mutants, but
LLMorpheus is still effective when codellama-13b-instruct,
mixtral-8x7b-instruct, and gpt-4o-mini are used.

To investigate LLMorpheus’s ability to produce mutants that
resemble real-world faults, we conducted a detailed case study
involving 40 real-world bugs. In this case study, we used
LLMorpheus to mutate the fixed version of a program near the
location of the fix, executed the program’s tests for each of
these mutants and compared the test outcomes against those
of the buggy version. For the 40 bugs under consideration
in the case study, LLMorpheus was able to produce mutants
that are syntactically identical to the buggy code fragments
in 10 cases, and mutants that produce the same test failures
as the original bug in an additional 26 cases. This provides
evidence that LLMorpheus is capable of generating mutants
whose behavior resembles that of real-world bugs, and that
this capability is not entirely due to training-set leakage.

In summary, the contributions of this paper are:
1) A technique for mutation testing in which placeholders

are introduced at designated locations in a program’s
source code, and where an LLM is prompted to suggest
what they could be replaced with.

2) An implementation of this technique in LLMorpheus, a
practical mutation testing tool for JavaScript.

3) An empirical evaluation of LLMorpheus on 13 subject
applications, demonstrating its practicality and compar-
ing it to a standard approach to mutation testing based
on mutation operators.

4) A case study demonstrating LLMorpheus’ ability to
produce mutants with behavior resembling that of real-
world bugs.

The remainder of this paper is organized as follows. Sec-
tion II presents motivating examples that illustrate the po-
tential of LLM-based mutation techniques to introduce faults
resembling real bugs. In Section III, an overview of our

(a)

(b)

(c)
Fig. 1. (a) Fix for a bug reported in issue #36 in zip!a!folder. (b) A mutation
suggested by LLMorpheus at the same line that involves replacing read-access
with write-access. (c) A mutation suggested by LLMorpheus elsewhere in the
same file that mirrors the change made by the developer.

approach is presented. Section IV presents an evaluation of
LLMorpheus and Section V covers threats to validity. Related
work is discussed in Section VI. Lastly, Section VII presents
conclusions and directions for future work.

II. BACKGROUND AND MOTIVATION

In this section, we study a few bugs that do not correspond
to mutation operators supported by state-of-the-art mutation
testing tools but that are similar to mutations LLMorpheus
could suggest.

a) Example 1.: Zip-a-folder [17] is a library for com-
pressing folders. On January 31, 2022, a user observed that the
library required write access for source folders unnecessarily
and opened issue #36, requesting that this access be removed.
The developer applied the fix shown in Figure 1(a) on the same
day, which involves replacing a binary bitwise-or expression
with one of its operands.

LLMorpheus can suggest mutations that involve changing or
introducing references to functions, variables, and properties.
Figure 1(b) and (c) show two mutations that LLMorpheus
suggests for this project and that could result in bugs similar
to the one described above: part (b) shows a mutation at the
same line where the bug was located that involves replacing
read access with write access and part (c) shows a mutation at a
nearby location that mirrors the change made by the developer.

The state-of-the-art StrykerJS tool is unable to suggest either
of these mutations because (i) it does not support the mutation
of bitwise operator expressions such as fs .constants.R OK | fs.
constants.W OK unless they appear as part of a control-flow
predicate, nor (ii) mutations that involve replacing a binary
expression with one of its operands. While adding support for
mutating bitwise operator expressions would be straightfor-
ward, concerns have been expressed that adding more mutation
operators to traditional mutation testing tools might result in
too many mutants and degraded performance [13], [18], [19].
More significantly, StrykerJS does not introduce or modify
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(a)

(b)
Fig. 2. (a) Fix for a bug reported in issue #60 in countries!and!timezones.
(b) A mutation suggested by LLMorpheus elsewhere in the same file.

property access expressions and has very limited support for
replacing an expression with a different expression1.

b) Example 2.: Countries-and-timezones [20] is a library
for working with countries and timezones. In October 2023,
a user reported a bug in function getOffsetStr, stating that it
produces incorrect results when invoked with negative values.
The developer proposed a simple fix that involves inserting a
call to Math.abs to convert the argument value to a non-negative
number, and a variation on this fix was quickly adopted by the
developer, as shown in Figure 2(a).

This bug fix involves the introduction of a function call,
so to introduce bugs like this one, a mutation testing tool
would have to remove function calls or change the function
being invoked. StrykerJS only supports a very limited set of
20 mutations to function calls2, such as replacing calls to
String .startsWith with call to String .endsWith and removing a
call to Array. slice . While one could extend StrykerJS with a
mutator that removes calls to Math.abs, many other function
calls could be handled similarly, and adding mutators for all of
them would yield an overwhelmingly large number of mutants.
Many such candidate functions would not be good choices
for mutation, either because the function in question is not a
function that a developer inadvertently might have selected or
because it would lead to syntactically invalid code.

LLMorpheus suggests mutations that involve introducing
and replacing function calls. Figure 2(b) shows a mutation
that LLMorpheus suggested elsewhere in the same source
file that replaces a call to Math.abs with a call to Math.round,
which could, in principle, introduce a bug like the one in
Figure 2(a). Moreover, since LLMs are trained to generate
code that resembles code written by developers, it is likely that
the mutants produced by LLMorpheus involve using functions
that a developer might have chosen.

c) Example 3.: image-downloader is a module for down-
loading images. In February 2022, a user opened issue #27,
entitled “If the directory name in dest: contains a dot ” . ”

1In particular, StrykerJS only replaces control-flow predicates in if -
statements and loops with boolean constants, string literals with the value
”Stryker was here”, and object literals with an empty object literal.

2See https://stryker-mutator.io/docs/mutation-testing-elements/
supported-mutators/.

(a)

(b)
Fig. 3. (a) Fix for a bug reported in issue #27 in image!downloader.
(b) A mutation suggested by LLMorpheus at the same location that similarly
involves calling a different function.

Fig. 4. A mutation suggested by LLMorpheus that involves associating an
event listener with the end event instead of with the close event.

then the download fails.”, providing an example illustrating
the problem. The developers soon responded with a fix,
shown in Figure 3(a), that involves replacing a call to path.
resolve with a call to path. join . While LLMorpheus does not
produce a mutant that re-introduces this bug exactly, it does
produce several at the same location3 that similarly replace the
invoked function, including the one shown in Figure 3(b). As
mentioned, StrykerJS has very limited support for mutations
that involve calling different functions and so it cannot suggest
mutations like the one shown in Figure 3(b).

d) Example 4.: Figure 4 shows another mutant produced
by LLMorpheus for zip-a-folder. Here, the mutation involves
changing the name of the event with which an event listener
is associated. Such errors often cause “dead listeners”, i.e.,
situations where an event handler is never executed because
it is associated with the wrong event. Dead listeners are
quite common in JavaScript, where the use of string values
to identify events precludes static checking, and previous
research has focused on static analysis [21] and statistical
methods [22] for detecting such errors.

e) Discussion: The above examples illustrate just a few
of the kinds of mutations that LLMorpheus may produce.
Other mutations that it may suggest include: replacing a
reference to a variable with a reference to a different variable,
adding or removing arguments in function calls, and modifying
object literals by adding or removing property-value pairs.

In practice, the number of such mutations is effectively
infinite, so an approach based on exhaustively applying a
fixed set of mutation operators is unlikely to be practical.
LLMorpheus’ LLM-based approach leverages the collective
wisdom of programmers who wrote the code on which the

3The line numbers have shifted slightly as the code has evolved since the
bug report.

https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
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Fig. 5. Overview of approach.

LLM was trained to develop mutations. As a result, suggested
changes are likely to refer only to variables and functions that
are in scope and are likely to be type-correct.

III. APPROACH

LLMorpheus is capable of producing interesting mutants
without requiring any training on a subject project, which
is a key distinction compared to existing work that builds
models of real bugs to generate mutants [14]–[16]. This
is accomplished by querying an LLM with a prompt that
includes part of an application’s source code in which a
code fragment is replaced with the text “<PLACEHOLDER>”.
Additional information provided in the prompt includes: (i)
general background on mutation testing, (ii) the code fragment
that was originally present at the placeholder’s location, (iii)
a request to apply mutation testing to the code by replacing
the placeholder with a buggy code fragment, and (iv) sug-
gestions how the code could be mutated. The LLM is asked
to provide three possible replacements for the placeholder4,
each accompanied by an explanation how the mutation would
change program behavior.

Figure 5 presents a high-level overview of our approach,
which involves three components that work in concert: the
prompt generator, the mutant generator, and a version of the
StrykerJS mutation testing tool that has been modified to apply
the mutants created by LLMorpheus5 We now discuss each of
these components.

a) Prompt generator: This component takes as input a
package and generates a set of prompts. This involves parsing
the source files and identifying locations where mutations
will be introduced. For ease of reference during prompting,
the source code fragment corresponding to each location
is replaced with the text “<PLACEHOLDER>”. LLMorpheus
considers the following locations as candidates for mutation:
(i) conditions of if , switch, while, and do!while statements, (ii)
initializers, updaters, and entire headers of loop statements,
and (iii) receiver, arguments, and entire sequence of arguments
for function calls. For each such location, a separate prompt is
created. Figure 6 illustrates where placeholders are introduced
into the source code.

The LLM is then given a prompt that is created by instan-
tiating the template shown in Figure 7(a), by replacing {{{
code}}} with the original source code in which a placeholder
has been inserted, and {{{orig}}} with the code fragment that

4The mutants produced by LLMorpheus always contain exactly one code
change; if three valid suggestions are received from the LLM in response to
one prompt, then three separate mutants will be generated.

5In particular, we use StrykerJS’ to (i) determine the impact of each mutant
on an application’s tests and classify it as “killed”, “survived”, or “timed-out”
and (ii) generate an interactive web page for inspecting results.

if (x === y){ ... } if (<PLACEHOLDER>){ ... }
switch (x === y){ ... } switch (<PLACEHOLDER>){ ... }

while (x){ ... } while (<PLACEHOLDER>){ ... }
do { ... } while (x)} do { ... } while (<PLACEHOLDER>)

for ( let i=0; i < x; i++){
...

}

for (<PLACEHOLDER>; i < x; i++){ ... }
for ( let i=0; <PLACEHOLDER>; i++){ ... }
for ( let i=0; i < x; <PLACEHOLDER>){ ... }
for (<PLACEHOLDER>){ ... }

for (o in obj){ ... }
for (<PLACEHOLDER> in obj){ ... }
for (o in <PLACEHOLDER>){ ... }
for (<PLACEHOLDER>){ ... }

for (o of obj){ ... }
for (<PLACEHOLDER> of obj){ ... }
for (o of <PLACEHOLDER>){ ... }
for (<PLACEHOLDER>){ ... }

a.m(x,y)

<PLACEHOLDER>(x,y)
a .m(<PLACEHOLDER>,y)
a .m(x,<PLACEHOLDER>)
a .m(<PLACEHOLDER>)

Fig. 6. Illustration of the insertion of placeholders to direct the LLM at source
locations that need to be mutated.

was replaced by the placeholder. Figure 7(b) shows the system
prompt given to the LLM, which provides background on the
role the LLM is expected to play in the conversation as a
mutation testing expert. As can be seen in Figure 7(a), the
prompt provides instructions for applying mutation testing to
the specific source code at hand and details the format to which
the completion should conform. Specifically, we require that
the proposed mutants be provided inside “fenced code blocks”
(i.e., code blocks surrounded by three backquote characters).

b) Mutant generator: This component takes the com-
pletions received from the LLM and extracts candidate mu-
tants from the instantiated template by matching a regular
expression against the completion to find the fenced code
blocks. Candidate mutants identical to the original source
code fragment or identical to previously generated mutants
are discarded. The candidate mutants are then parsed to check
if they are syntactically valid and discarded if this is not the
case. The resulting mutants are written to a file mutants.json that
is read by a customized version of StrykerJS that is described
below. The mutant generator also saves all experimental data
to files, including the generated prompts, completions received
from the LLM, and the configuration options (e.g., the LLM’s
temperature setting).

c) Custom version of StrykerJS: We modified StrykerJS
to give it an option !!usePrecomputed that, if selected, directs
it to read its set of mutations from a file mutants.json instead.
StrykerJS then executes all mutants and determines (for each
mutant) whether it causes tests to fail or time out. When
this analysis is complete, StrykerJS generates a report as an
interactive web page, allowing users to inspect the generated
mutants. The previously shown Figures 1–4 show screenshots
of our custom version of StrykerJS.
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Your task is to apply mutation testing to the following
code:
‘‘‘
{{{code}}}
‘‘‘

by replacing the PLACEHOLDER with a buggy code fragment
that has different behavior than the original code fragment,
which was:
‘‘‘
{{{orig}}}
‘‘‘
Please consider changes such as using different operators,
changing constants, referring to different variables, object
properties, functions, or methods.

Provide three answers as fenced code blocks containing a
single line of code, using the following template:

Option 1: The PLACEHOLDER can be replaced with:
‘‘‘
<code fragment>
‘‘‘
This would result in different behavior because
<brief explanation>.

Option 2: The PLACEHOLDER can be replaced with:
‘‘‘
<code fragment>
‘‘‘
This would result in different behavior because
<brief explanation>.

Option 3: The PLACEHOLDER can be replaced with:
‘‘‘
<code fragment>
‘‘‘
This would result in different behavior because
<brief explanation>.

Please conclude your response with "DONE."
(a)

You are an expert in mutation testing. Your job is to
make small changes to a project’s code in order to find
weaknesses in its test suite. If none of the tests fail
after you make a change, that indicates that the tests
may not be as effective as the developers might have
hoped, and provide them with a starting point for
improving their test suite.

(b)
Fig. 7. Prompt template (a) and system prompt (b) used by LLMorpheus.

d) Pragmatics: While LLMorpheus implements a con-
ceptually straightforward technique, considerable engineering
effort was required to make it a practical tool. We use BabelJS
[23] for parsing source code to identify locations where
placeholders should be inserted and to check the syntactic
validity of candidate mutants. Handlebars [24] is used for
instantiating prompt templates. StrykerJS expects mutants to
correspond to a single AST node, so for mutants that do not
correspond exactly to a single AST node (e.g., loop headers
and sequences of arguments passed in function calls), it is
necessary to expand the mutation to the nearest enclosing AST
node, for which we also rely on BabelJS.

LLMorpheus has command-line arguments for specifying
the prompt template and system template to be used. Further-
more, it enables users to specify a number of LLM-specific
parameters, such as the maximum length of completions that

should be generated, the sampling temperature6, and number
of lines of source code that should be included in prompts (by
default, this is limited to 200 lines surrounding the location of
the placeholder). Since many LLM installations have limited
capacity or explicit rate limits, LLMorpheus provides two
command-line options to work with such LLMs: !!rateLimit
<N> ensures that at least N milliseconds will have elapsed

between successive prompts and !!nrAttempts <N> will try the
same prompt up to N times if a 429 error occurs.

One possible concern with our approach is that LLMorpheus
relies on a fixed set of locations where it introduces placehold-
ers. The current placeholder scheme aims to balance creating
a practical number of mutants and a larger set of mutants
where at least one is more likely to result in a different
control flow or data flow. Modifying LLMorpheus to use a
different placeholder scheme would be straightforward. That
said, the examples in Section II show that mutants produced
by LLMorpheus (using its current placeholder scheme) involve
changing references to variables, properties, and functions that
cannot be produced using Stryker’s mutation operators and that
correspond to real-world bugs.

An open-source release of LLMorpheus can be found at
https://github.com/neu-se/llmorpheus and the customized ver-
sion of StrykerJS that we used for classifying mutants can be
found at https://github.com/neu-se/stryker-js.

IV. EVALUATION

A. Research Questions
This evaluation aims to answer the following research

questions:
RQ1 How many mutants does LLMorpheus create?
RQ2 How many of the surviving mutants produced by

LLMorpheus are equivalent mutants?
RQ3 What is the effect of using different temperature set-

tings?
RQ4 What is the effect of variations in the prompting strategy

used by LLMorpheus?
RQ5 How does the effectiveness of LLMorpheus depend on

the LLM that is being used?
RQ6 What is the cost of running LLMorpheus?
RQ7 Is LLMorpheus capable of producing mutants that re-

semble existing bugs?

B. Experimental Setup
a) Selecting subject applications: Our goal is to evaluate

LLMorpheus on real-world JavaScript packages that have test
suites. Moreover, we want to compare the mutants generated
byLLMorpheus to those generated using traditional mutation
testing techniques, so we decided to focus on projects for
which the state-of-the-art StrykerJS mutation testing tool [12]
could be applied successfully. As a starting point for bench-
mark selection, we considered the 25 subject applications that

6The sampling temperature is a parameter between 0 and 2 that controls the
randomness of the completions generated by the LLM. Roughly speaking, the
higher the temperature the more diverse the completions. At temperature zero,
the LLM will always generate the most likely completion, which increases
the chance that the same prompt will result in the same completion.

https://github.com/neu-se/llmorpheus
https://github.com/neu-se/stryker-js
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Complex.js complex numbers 671K 1,425 216 71.82% 67.54% 1,302 763 539 0 58.60 405.08
countries-and-timezones accessing countries and time-

zones data
152K 165 58 100% 92.55% 140 134 6 0 95.71 142.37

crawler-url-parser URL parser for crawling 495 209 185 96.39% 92.5% 226 143 83 0 63.27 433.53
delta Format for representing rich text

documents and changes
1.76M 806 180 98.99% 95.89% 834 686 88 60 89.45 2747.04

image-downloader downloading image to disk from
a given URL

17.75K 64 11 100% 93.75% 43 28 11 4 74.42 284.20

node-dirty key value store with append-only
disk log

5,604 207 37 83.01% 71.15% 160 78 56 26 65.00 215.93

node-geo-point calculations involving geograph-
ical coordinates

5,618 406 10 85.36% 70.58% 158 98 60 0 62.03 357.70

node-jsonfile reading/writing JSON files 57.7M 102 43 97.87% 94.11% 61 31 5 25 91.80 188.91
plural plural forms of nouns 2,271 103 14 95.38% 72.72% 180 143 37 0 79.44 53.66
pull-stream pipeable pull-stream 57.8K 602 364 90.96% 80.84% 474 318 116 40 75.53 694.33
q promises 10.1M 2,111 243 89.5% 70.92% 1,058 68 927 63 12.38 7,075.02
spacl-core path-based access control 3 377 38 100% 100% 259 239 20 0 92.28 1,053.16
zip-a-folder zip/tar utility 60.1K 156 22 100% 96.87% 74 38 8 28 89.19 513.27

TABLE I
SUBJECT APPLICATIONS USED TO EVALUATE LLMorpheus.

were used to evaluate TestPilot [25], a recent LLM-based
unit test generation tool. These applications are written in
JavaScript or TypeScript, cover various domains, and have test
suites that can be executed successfully.

Of these 25 subject applications, 10 could not be used
because StrykerJS does not work on them, either because
its dependences conflict with those of the subject application
itself7, or because it crashes. On one package, simple-statistics,
StrykerJS requires approximately 10 hours of running time,
which makes using it impractical. We excluded another pack-
age, fs-extra, a utility library for accessing the file system,
because we observed that mutating this application poses a
significant security risk, as the mutated code was corrupting
our local file system. This left us with 13 subject applications
for which Table I provides key characteristics. The first set of
columns in the table show, from left to right, the name of the
package, a short description of its functionality, the number
of weekly downloads according to npmjs.com, the number of
lines of source code, the number of tests, and the statement
and branch coverage achieved by those tests, respectively. The
second set of columns shows the results of running StrykerJS
on the applications: the total set of mutants, the number of
mutants that were killed, survived, and that timed out, the
mutation score8 reported by StrykerJS, and the time required
to run StrykerJS, respectively.

b) LLM selection: RQ5 explores how the effectiveness
of the proposed technique depends on the LLM being used.
We use Meta’s codellama-34b-instruct model for our main ex-
periments. In addition, we evaluate the technique with Meta’s
codellama-13b-instruct and llama-3.3-70b-instruct models,
with Mistral’s mixtral-8x7b-instruct model, and with OpenAI’s
gpt-4o-mini model. The codellama models are specifically

7Running StrykerJS on an application requires installing it locally among
the subject project libraries. Stryker itself depends on various other packages
that also need to be installed, and these packages may conflict with packages
that the subject application itself depends upon.

8The mutation score aims to provide a measure of the quality of a test suite
by calculating the fraction of the total number of mutants that are detected
(i.e., killed or timed out), see https://stryker-mutator.io/docs/General/faq/.

trained for tasks involving code. llama-3.3-70b-instruct is
a newer and larger model from Meta that supersedes the
smaller, specialized codellama models. mixtral-8x7b-instruct
is a state-of-the-art general-purpose “mixture-of-experts”
LLM developed by Mistral. gpt-4o-mini is a smaller,
faster, and lower-cost variant of OpenAI’s popular gpt-4o
model The codellama-34b-instruct, codellama-13b-instruct,
llama-3.3-70b-instruct, and mixtral-8x7b-instruct LLMs are
“open” in the sense that their training process is documented.
We relied on several commercial LLM service providers
(https://octo.ai, https://openai.com, and https://openrouter.ai)
for the experiments reported on in this paper.

c) LLM Temperature settings: LLMs have a temperature
parameter that reflects the amount of randomness or creativity
in their completions. For a task such as mutation testing,
randomness and creativity may determine whether generated
mutants are killed or survive. Therefore, we conduct experi-
ments using several temperature settings.

d) Similarity to real-world bugs: Previous work evalu-
ating mutation testing techniques has focused on “coupling”
to determine whether mutants resemble real-world bugs [5],
[6], [26]. This involves determining whether a test suite that
detects particular mutants also detects particular real faults and
requires a curated dataset of isolated faults. While many such
datasets have been constructed from open-source projects writ-
ten in Java, we found only one JavaScript dataset, the Bugs.js
suite [27]. For each of these bugs, the original faulty version
is provided, along with a cleaned patch extracted from the bug
fix and instructions on executing the test cases. Unfortunately,
we found that most of the Bugs.js subjects could not be used
at all due to their reliance on outdated versions of various
libraries and because of their incompatibility with modern
Node.js versions that StrykerJS requires, causing them to be
incompatible with LLMorpheus. These projects also have flaky
tests9, making it particularly challenging to perform mutation
analysis [28].

9See https://github.com/BugsJS/bug-dataset/issues/11.

https://github.com/infusion/Complex.js/tree/d995ca105e8adef4c38d0ace50643daf84e0dd1c
https://github.com/manuelmhtr/countries-and-timezones/tree/241dd0f56dfc527bcd87779ae14ed67bd25c1c0e
https://gitlab.com/autokent/crawler-url-parser/tree/202c5b25ad693d284804261e2b3815fe66e0723e
https://github.com/quilljs/delta/tree/5ffb853d645aa5b4c93e42aa52697e2824afc869
https://gitlab.com/demsking/image-downloader/tree/19a53f652824bd0c612cc5bcd3a2eb173a16f938
https://github.com/felixge/node-dirty/tree/d7fb4d4ecf0cce144efa21b674965631a7955e61
https://github.com/rainder/node-geo-point/tree/c839d477ff7a48d1fc6574495cbbc6196161f494
https://github.com/jprichardson/node-jsonfile/tree/9c6478a85899a9318547a6e9514b0403166d8c5c
https://github.com/swang/plural/tree/f0027d66ecb37ce0108c8bcb4a6a448d1bf64047
https://github.com/pull-stream/pull-stream/tree/29b4868bb3864c427c3988855c5d65ad5cb2cb1c
https://github.com/kriskowal/q/tree/6bc7f524eb104aca8bffde95f180b5210eb8dd4b
https://gitlab.com/cptpackrat/spacl-core/tree/fcb8511a0d01bdc206582cfacb3e2b01a0288f6a
https://github.com/maugenst/zip-a-folder/tree/d2ea465b20dc33cf8c98c58a7acaf875c586c3e1
npmjs.com
https://stryker-mutator.io/docs/General/faq/
https://octo.ai
https://openai.com
https://openrouter.ai
https://github.com/BugsJS/bug-dataset/issues/11
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We therefore constructed a new dataset10 consisting of 40
real-world bugs, which includes 4 real-world bugs from the
Bugs.js suite that we could reproduce reliably and 36 real-
world bugs that we manually curated from various Node.js
applications that are available from GitHub (including some
of the applications listed in Table I).

We identified these bugs by searching https://www.npmjs.
com/ for Node.js applications that cover a variety of domains,
studying the issues in the GitHub repositories associated with
these applications for messages that indicated the presence of
a bug, and finding a subsequent “bug fix” commit in which
this bug had been fixed (in most cases these also included the
addition of new tests, or changes to existing tests). We then
cloned the repository at that commit, reintroduced the bug, and
observed if it caused any test failures. We discarded projects in
which bugs/issues are not tracked explicitly and we discarded
bugs that did not cause any test failures when reintroduced.
In addition, we restricted our attention to bugs for which the
commit containing the fix involves changing at most three
lines of source code. Section IV-I will report on experiments
in which mutants are introduced at these locations, and our
goal was to keep the number of such mutants manageable,
given that careful manual analysis is involved in comparing
the behavior of each mutant to that of the original buggy code.

C. RQ1: How many mutants does LLMorpheus create?
To answer this question, we ran LLMorpheus on the projects

listed in Table I using the codellama-34b-instruct LLM at
temperature 0.0 and the prompt templates shown in Fig-
ure 7. The results, shown in Table II, show that LLMorpheus
produces between 42 and 1,051 prompts for these projects.
The following four columns in the table show the number
of “candidate mutants”, i.e., code fragments obtained by
replacing placeholders with code fragments suggested by the
LLM. The subcolumn labeled “candidates” shows the total
number of candidate mutants, the subcolumn labeled “invalid”
shows the number of candidate mutants that were found to
be syntactically invalid, the subcolumn labeled “identical”
shows the number of candidate mutants that were found to
be identical to the original code, and the subcolumn labeled
“duplicate” shows the number of candidate mutants that were
found to be duplicated. From this data, it can be inferred
that, on average, 29.0% (2,894/9,967) of candidate mutants
are discarded because they are syntactically invalid, 1.6%
(156/9,967) are discarded because they are identical to the
original code, and 2.1% (205/9,967) are discarded because
they are duplicates. This suggests that LLMs generally do not
have too much trouble with generating syntactically correct
code, which is consistent with recent findings by others [25],
[29].

The next column, labeled “mutants”, shows the number
of remaining mutants after discarding the useless candidate
mutants. Here, the reader can see that between 89 and 2,035
mutants are generated for the subject packages. Of these

10To facilitate further research by the community, our new bug dataset is
available from https://github.com/neu-se/mutation-testing-data along with all
experimental results associated with this paper.

mutants, between 23 and 725 are killed, between 3 and
1,792 survive, and between 0 and 85 time out. Aggregating
the results over the 13 projects, it can be seen that 48.2%
(3,237/6,712) of all mutants are killed, 47.0% (3,155/6,712)
of all mutants survive, and 4.8% (320/6,712) of all mutants
time out.

The table also shows the mutation score11 as reported by
StrykerJS, which aims to provide a measure of the quality of
a test suite by calculating the fraction of the total number of
detected mutants (i.e., killed or timed out).

To facilitate a quantitative comparison with StrykerJS, the
last five columns in Table II repeat the results of running
StrykerJS on the subject applications from Table I. From this
data, it can be seen that—in the aggregate for the 13 projects
under consideration—LLMorpheus produces 3,155 surviving
mutants whereas StrykerJS produces 1,956 surviving mutants.
However, it should be noted that the difference in the number
of mutants and surviving mutants varies significantly between
subject applications. For example, for Complex.js StrykerJS
produces more mutants (1,302 vs. 1,199) than LLMorpheus,
of which more survive (539 vs. 473). On the other hand, for
q, the situation is reversed with StrykerJS producing fewer
mutants (1,058 vs. 2,035) and fewer surviving mutants (927
vs.1,792) than LLMorpheus. We conjecture that such differ-
ences are due to the subject programs’ different characteristics,
which make them amenable to different types of mutations.
Here, Complex.js heavily uses arithmetic operators to im-
plement mathematical operations on complex numbers, and
such operators are prime candidates for StrykerJS’s standard
mutation operators. Moreover, q makes heavy use of method
calls, which are targeted by LLMorpheus’s placeholder-based
strategy but much less so by StrykerJS’s mutation operators.

LLMs are nondeterministic, even at temperature 0.0, so a
subsequent experiment may produce results that differ from
those shown in Table II. To determine to what extent this
is the case, we repeated the same experiment four more
times and measured how often the same mutants occur. We
found that, at temperature 0.0, the results of LLMorpheus
are generally stable across runs, with between 89.29% and
98.89% of all mutants being observed in all 5 experiments12.
Figure 8 visualizes the stability of LLMorpheus when varying
the prompt settings, and our supplemental materials include
results across all settings of all models.

Using codellama-34b-instruct at temperature 0.0, LLMorpheus gen-
erates between 89 and 2,035 mutants, of which between 3 and
1,792 survive. These results are stable across experiments, with
between 89.29% and 98.89% of all mutants being observed in all
five experiments.

D. RQ2: How many of the surviving mutants are equivalent
mutants?

One of the key challenges in mutation testing is the phe-
nomenon of equivalent mutants: mutants that have equiva-
lent behavior as the original code [4]. Mutants produced by

11See https://stryker-mutator.io/docs/General/faq/.
12All experimental data associated with this experiment and the other

experiments are included with this submission as supplemental materials.

https://www.npmjs.com/
https://www.npmjs.com/
https://github.com/neu-se/mutation-testing-data
https://stryker-mutator.io/docs/General/faq/
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Complex.js 490 1,451 194 13 45 1,199 725 473 1 60.55 1,302 763 539 0 58.60
countries-and-timezones 106 318 89 0 12 217 188 29 0 86.64 140 134 6 0 95.71
crawler-url-parser 176 521 205 14 17 285 157 128 0 55.09 226 143 83 0 63.27
delta 462 1,367 565 10 25 767 634 101 32 86.83 834 686 88 60 89.45
image-downloader 42 124 33 2 0 89 72 17 0 80.90 43 28 11 4 74.42
node-dirty 154 450 153 15 7 275 163 100 12 63.64 160 78 56 26 65.00
node-geo-point 140 408 93 0 13 302 223 79 0 73.84 158 98 60 0 62.03
node-jsonfile 68 199 42 3 0 154 49 48 57 68.83 61 31 5 25 91.80
plural 153 442 101 42 18 281 205 75 1 73.31 180 143 37 0 79.44
pull-stream 351 1,028 238 12 9 769 441 271 57 64.76 474 318 116 40 75.53
q 1,051 3,121 1,000 34 52 2,035 158 1,792 85 11.94 1,058 68 927 63 12.38
spacl-core 134 395 140 10 6 239 199 39 1 83.68 259 239 20 0 92.28
zip-a-folder 49 143 41 1 1 100 23 3 74 97.00 74 38 8 28 89.19
Total 3,376 9,967 2,894 156 205 6,712 3,237 3,155 320 — 4,969 2,767 1,956 246 —

TABLE II
RESULTS FROM LLMORPHEUS EXPERIMENT (RUN #312). MODEL: codellama-34b-instruct, TEMPERATURE: 0.0, MAXTOKENS: 250, TEMPLATE:

template-full.hb, SYSTEMPROMPT: SystemPrompt-MutationTestingExpert.txt.

temp. 0.0 (run #312) temp. 0.25 (run #348) temp. 0.50 (run #318) temp. 1.0 (run #341)
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Complex.js 1,199 725 473 1 1,197 730 466 1 1,191 739 452 0 1,028 648 379 1
countries-and-timezones 217 188 29 0 219 181 38 0 224 194 30 0 186 156 30 0
crawler-url-parser 285 157 128 0 260 167 93 0 298 166 108 24 278 202 76 0
delta 767 634 101 32 781 642 111 28 769 642 93 34 698 583 83 32
image-downloader 89 72 17 0 86 71 15 0 89 68 21 0 75 53 22 0
node-dirty 275 163 100 12 279 175 93 11 277 158 107 12 246 150 84 12
node-geo-point 302 223 79 0 293 225 68 0 302 230 72 0 273 213 60 0
node-jsonfile 154 49 48 57 151 52 41 58 153 51 43 59 132 50 22 60
plural 281 205 75 1 273 208 63 2 289 219 69 1 299 229 69 1
pull-stream 769 441 271 57 779 452 270 57 796 465 278 53 743 461 235 47
q 2,035 158 1,792 85 2,050 153 1,813 84 2,073 163 1,823 87 1,899 147 1,671 81
spacl-core 239 199 39 1 223 187 36 0 250 210 39 1 218 180 38 0
zip-a-folder 100 23 3 74 97 24 4 69 87 48 33 6 96 54 38 4
Total 6,712 3,237 3,155 320 6,688 3,267 3,111 310 6,798 3,353 3,168 277 6,171 3,126 2,807 238

TABLE III
NUMBER OF MUTANTS GENERATED USING THE codellama-34b-instruct LLM AT TEMPERATURES 0.0, 0.25, 0.5, AND 1.0 (SHOWING ONE RUN OF EACH)

codellama−34b−instruct−basic−0.0
codellama−34b−instruct−full−0.0

codellama−34b−instruct−full−genericsystemprompt−0.0
codellama−34b−instruct−noexplanation−0.0
codellama−34b−instruct−noinstructions−0.0

codellama−34b−instruct−onemutation−0.0

0 2000 4000 6000
Number of Mutants

Number of trials observed 1 2 3 4 5

Fig. 8. Stability of mutants generated by LLMorpheus with codellama-34b-instruct at temperature 0.0. For each replacement generated at each position, we
count the number of trials (of 5 total) where that replacement was generated.

LLMorpheus may involve arbitrary code changes, so the LLM
could suggest code that is effectively a refactored version of
the code that was originally present. To determine to what
extent surviving mutants produced by LLMorpheus are equiv-
alent, we conducted a study in which two authors manually
examined 50 surviving mutants13 in each project and classified
each mutant as “equivalent” or “not equivalent” by Stryker or
by LLMorpheus (sampled from run 314).

We labeled a mutant as equivalent if we could determine
that the change could not cause any observable difference in
behavior. For example, mutants that added extra parameters

13For projects with fewer than 50 surviving mutants, we used as many as
were available.

to methods (beyond those accepted by the receiver method)
are trivially equivalent, as the runtime discards them. Other
mutants are far from trivial to evaluate, and we manually wrote
test code to attempt to discern the impact of, e.g., changing
a condition from if (! handler) to if (handler === undefined). Such
a mutant is equivalent only if handler can never be any other
“falsy” value (e.g., null, false, NaN, 0, or the empty string ’ ’).

We labeled a mutant as not equivalent if it produced a
change that could be observed as a behavioral change to a user
of the library. By necessity, this definition is conservative: if
there could exist any client of the library that would witness
a different behavior, then the mutant is not equivalent. Note
that this definition also includes changes to output messages
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LLMorpheus Stryker.js
Project Equiv Not Equiv Equiv Not Equiv
Complex.js 6 44 1 49
countries-and-timezones 18 11 0 6
crawler-url-parser 11 39 5 45
delta 9 41 7 43
image-downloader 4 13 0 8
node-dirty 13 37 0 50
node-geo-point 3 47 5 45
node-jsonfile 12 25 0 3
plural 12 38 0 37
pull-stream 1 49 0 50
q 0 50 0 50
spacl-core 17 24 2 18
zip-a-folder 0 0 0 6

Total 106 418 20 410

TABLE IV
NUMBER OF EQUIVALENT SURVIVING MUTANTS GENERATED BY

LLMorpheus AND StrykerJS.

printed on the console or to the messages included with errors.
For example, a mutant in the statement const hours=Math.floor
(totalMinutes/60) that changes the call from Math.floor to Math
.round will result in the value of hours being incorrect. Of
course, if hours is never used (or it doesn’t matter that it is
off-by-one), then the mutant could still be equivalent. Hence,
we also found it necessary to trace through code to determine
that some mutants were not equivalent.

Coding began with a pilot phase, where each coder la-
beled 10 surviving mutants in each project as equivalent or
not. This process demonstrated strong agreement (Cohen’s
ω = 0.873) [30], and the coders met briefly to clarify the
few disagreements before proceeding with the remainder of
the dataset. After independently coding the remainder of the
dataset, the two result files were again compared for inter-
rater reliability agreement, finding ω = 0.846, again indicating
strong agreement [30]. To finalize the coding, the two authors
met to discuss the cases on which they disagreed, reaching a
consensus on the coding for all mutants during a single 30-
minute session.

The results are shown in Table IV. Of the 524 LLMorpheus
mutants examined, the majority (418, or 80%) are “not equiv-
alent” and 106 (20%) are “equivalent”. To contextualize these
results, we also examine the mutants generated by StrykerJS
and found that of 430 surviving mutants, 410 (95%) are “not
equivalent” and 20 (5%) are “equivalent”.

We further examined the 106 equivalent LLMorpheus mu-
tants and observed several common patterns, including: (i)
checking for null-ness or undefined-ness in different ways
(e.g., replacing x != null with !x or vice versa), (ii) refac-
toring of calls to the String .substring method with one of its
near-equivalent counterparts String .substr and String . slice , (iii)
adding modifiers such as /g or /m to a regular expression
in cases where this does not have any effect, (iv) calls to
the Array. slice method in cases where this does not have any
effect, and (v) calling functions with more arguments than are
declared. For the 106 equivalent mutants under consideration,
approximately 40% fall into one of these categories. We expect
that most of these equivalent mutants can be filtered out using
an AST-based static analysis. However, further investigation
is needed because some mutants that cause behavioral differ-

ences are syntactically similar to these patterns. This means
that any pattern-matching-based approach should consider the
context in which the mutation occurs to determine whether
a mutant is likely equivalent. Section VII will discuss future
work to reduce the number of equivalent mutants.

The majority (80%) of the surviving mutants produced by
LLMorpheus are not equivalent to the original code fragments they re-
place. LLMorpheus produces significantly more “equivalent” mutants
than StrykerJS. However, the number of “not-equivalent” mutants
exceeds the number of equivalent mutants by more than a factor of
three, and preliminary analysis reveals good potential for future work
on automatically filtering out equivalent mutants using static analysis.

E. RQ3: What is the effect of different temperature settings?
To explore the impact of an LLM’s temperature setting,

we repeated the experiment with the codellama-34b-instruct
LLM using temperatures 0.25, 0.50, and 1.0. The results of
these experiments are summarized in Table III. As can be
seen from the table, the total number of mutants and the
number of surviving mutants at temperatures 0.0, 0.25, and
0.50 are generally somewhat similar. However, at temperature
1.0, both the total number of mutants and the number of
surviving mutants decline noticeably compared to the results
for temperature 0.0. Inspection of the results revealed that
this is partly because more of the generated mutants are
syntactically invalid.

A secondary question is how temperature affects the vari-
ability of results. To answer this question, we repeated the
experiment 5 times at each temperature and measured how
many distinct mutants occur and how many mutants occur in
all five runs. We found that, at higher temperatures, the number
of distinct mutants increases rapidly and that the number
of mutants common to all runs decreases accordingly. For
example, for Complex.js, LLMorpheus generates 1,217 distinct
mutants at temperature 0.0 of which 1,181 (97.04%) are com-
mon to all five runs. At temperature 0.25, the number number
of distinct mutants increases to 2,354, of which 447 (18.99%)
are common to all five runs. At temperature 0.5, there are
3,196 distinct mutants of which 205 (6.41%) are common to
all runs. At temperature 1.0, there are 4,200 distinct mutants,
of which 17 (0.4%) are common to all runs, meaning that,
effectively, at temperature 1.0, each run produces completely
different mutants. The results for the other subject applications
are similar. The supplemental materials associated with this
paper include an analysis showing the overall variability in
mutants killed and survived across each of the five runs.

LLMorpheus generally produces similar numbers of mutants at tem-
peratures → 0.5, of which a similar number survives. At temper-
ature 1.0, the number of generated and surviving mutants declines
noticeably because more candidate mutants are syntactically invalid.
The variability of results is inversely dependent on the temperature,
with mostly the same mutants being produced at temperature 0.0 and
mostly different mutants at temperature 1.0 in different runs.

F. RQ4: What is the effect of variations in the prompting
strategy used by LLMorpheus?

Thus far, we have evaluated the effectiveness of the prompt
template of Figure 7(a) (henceforth referred to as full) by
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full onemutation noexplanation noinstructions genericsystemprompt basic
(run #312) (run #365) (run #372) (run #378) (run #384) (run #390)
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Complex.js 1,199 725 473 1 406 245 161 0 1,125 676 448 1 1,137 696 440 1 1,199 740 458 1 185 120 65 0
countries-
and-
timezones

217 188 29 0 79 65 14 0 211 183 28 0 218 174 44 0 217 191 26 0 48 44 4 0

crawler-
url-parser

285 157 128 0 86 50 36 0 239 140 99 0 246 134 112 0 246 143 103 0 67 49 18 0

delta 767 634 101 32 266 221 37 8 734 598 110 26 759 612 115 32 790 659 99 32 201 167 28 6
image-
downloader

89 72 17 0 34 26 8 0 77 62 15 0 84 69 15 0 88 72 16 0 10 7 3 0

node-dirty 275 163 100 12 99 55 41 3 258 146 99 13 260 146 103 11 277 162 104 11 44 24 18 2
node-geo-
point

302 223 79 0 104 74 30 0 297 216 81 0 306 230 76 0 305 229 76 0 62 54 8 0

node-
jsonfile

154 49 48 57 57 18 18 21 152 54 45 53 148 45 51 52 150 49 49 52 22 11 3 8

plural 281 205 75 1 100 70 30 0 273 198 74 1 261 189 71 1 272 209 62 1 92 78 14 0
pull-stream 769 441 271 57 280 165 95 20 774 440 278 56 781 467 248 66 763 442 266 55 149 88 54 7
q 2,035 158 1,792 85 703 46 630 27 1,856 138 1,635 83 1,958 138 1,726 94 2,007 145 1,770 92 401 38 350 13
spacl-core 239 199 39 1 80 63 17 0 211 175 35 1 187 155 31 1 214 181 32 1 25 23 2 0
zip-a-folder 100 23 3 74 39 19 17 3 98 27 3 68 97 26 4 67 101 27 3 71 20 5 1 14
Total 6,712 3,237 3,155 320 2,333 1,117 1,134 82 6,305 3,053 2,950 302 6,442 3,081 3,036 325 6,629 3,249 3,064 316 1,326 708 568 50

TABLE V
NUMBER OF MUTANTS GENERATED USING THE codellama-34b-instruct LLM AT TEMPERATURE 0.0 USING TEMPLATES FULL, ONEMUTATION,

NOEXPLANATION, NOINSTRUCTIONS, GEN.SYSTEM PROMPT, BASIC (SHOWING ONE RUN OF EACH).

measuring how many mutants are generated and classifying
them as “killed”, “survived”, or “timed-out” (see Table II). To
determine what the effect is of each component of this prompt,
we experimented with the following variations14:

a) onemutation: This variant requests just one replace-
ment of the placeholder instead of three possible replacements.

b) noexplanation: This variant omits the phrase “This
would result in different behavior because <brief explanation>.”.

c) noinstructions: This variant omits the phrase
“Please consider changes such as using different operators, changing
constants, referring to different variables , object properties,
functions, or methods.”

d) genericsystemprompt: In this variant, we replace
the system prompt of Figure 7(b) with a generic message
“You are a programming assistant. You are expected to be concise and
precise and avoid any unnecessary examples, tests, and verbosity.”

e) basic: This minimal template only asks the LLM to
provide a code fragment with which the placeholder can be
replaced without any additional context.

Table V shows, for each template, the total number of
mutants and the number that were killed, survived, and timed
out, respectively. From these results, it can be seen that:

• full and genericsystemprompt produced the most mutants
and performed similarly, demonstrating that the use of a
specialized system prompt has minimal impact,

• noexplanation and noinstructions produce only slightly
fewer mutants and surviving mutants than full and gener-
icsystemprompt, so including instructions or requesting
explanations for suggested mutations has limited impact,

• using onemutation dramatically reduces the number of
mutants from 6,712 to 2,333, demonstrating that it is
helpful to request multiple suggestions, and

• using basic reduces the number of mutants to 1,326,
suggesting that additional context in prompts is helpful.

14All prompt templates are included with the supplemental materials.
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Complex.js 4.27 3.37 5.09 4.27 4.17 11.98
countries-and-timezones 11.13 7.75 11.17 10.87 10.85 11.29
crawler-url-parser 9.50 6.41 9.46 9.49 9.30 20.04
delta 9.55 7.38 9.91 9.43 9.14 19.63
image-downloader 12.67 8.82 12.89 11.01 11.48 21.92
node-dirty 7.53 6.90 7.58 7.41 7.51 17.52
node-geo-point 8.86 6.10 8.79 7.75 8.66 15.66
node-jsonfile 9.73 6.98 9.76 7.77 8.91 11.64
plural 8.14 5.21 8.41 7.58 7.80 23.64
pull-stream 6.72 4.57 7.53 7.48 7.30 11.92
q 8.61 7.61 9.21 8.60 8.58 16.18
spacl-core 9.30 5.86 10.44 9.43 9.44 14.27
zip-a-folder 9.85 5.33 9.02 10.05 10.10 24.60

TABLE VI
AVERAGE STRING SIMILARITY OF MUTANTS TO THE ORIGINAL CODE
FRAGMENTS THAT THEY REPLACE, FOR MUTANTS GENERATED USING

EACH OF THE PROMPT TEMPLATES AT TEMPERATURE 0.0 USING
codellama-34b-instruct.

We separately analyzed the variability of these results (Table V
presents the results from a single trial) and found the number
of mutants killed and survived to be quite stable across trials
(the supplemental materials provide further detail).

We also investigated how similar mutants produced using
the different prompt templates are to the original code frag-
ments they replace. As manually inspecting sufficient samples
of mutants from each configuration would be infeasible, we
instead rely on an automated measure. We calculate the
Levenshtein string edit distance for each mutant between the
mutated and original code. Table VI reports the average
string edit distance scores for each of the prompt templates
by project.

Interpreting the results across different projects is challeng-
ing, as each project uses different code idioms that might lead
to different mutations. However, we observe several interesting
trends by comparing the mutant similarity across prompts
(within the same project). We find the basic template to
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produce the mutants that are least similar to the original
code. We examined samples of these mutants and found that
many were creative changes that injected large code blocks
in place of short, simple values. For example, in crawler-url-
parser, the mutant with the most significant string edit distance
(297) involves replacing a constant TRUE with an object literal.
While the onemutation template tended to produce mutants
most similar to the original code, this is likely due to the more
limited sample space. We infer that prompting for multiple
mutants can result in the LLM suggesting more significant
code changes than it would otherwise have.

The full template produces the most mutants and surviving mutants
overall. Using a specialized system prompt has a marginal effect.
Including instructions on performing mutations and requesting expla-
nations for mutations only modestly affects the number of mutants
generated and their detection rate. Requesting only one mutation
dramatically reduces the number of generated and surviving mutants,
and even greater reductions are observed if the LLM is only asked
to fill in the placeholder without additional guidance.

G. RQ5: How does the effectiveness of LLMorpheus depend
on the LLM being used?

The results discussed thus far were obtained with the
codellama- 34b-instruct LLM. To determine how the qual-
ity of results depends on the particular LLM being
used; we also experimented with codellama-13b-instruct,
llama-3.3-70b-instruct, mixtral-8x7b-instruct, and gpt-4o-mini
at temperature 0.0.

Table VII shows the number of mutant candidates produced
using each model (along with a breakdown how many of those
candidates are syntactically invalid, identical to the original
code, or duplicates), and the number of mutants produced
using each model, classified as killed, surviving, and timed-
out. Figure 9 shows a visual comparison of the total number
of mutant candidates and mutants produced using each of the
five LLMs under consideration, aggregated over all 13 subject
applications. From these results, it can be seen that:

• The codellama-34b-instruct model generates the
largest number of mutant candidates (9,967),
though the number of mutant candidates produced
by codellama-13b-instruct, mixtral-8x7b-instruct,
llama-3.3-70b-instruct, and gpt-4o-mini are quite similar.
codellama-13b-instruct produces noticeably fewer
mutant candidates (8,088).

• All models produce a significant number of mutant can-
didates that is syntactically invalid, ranging from 3,703
in the case of gpt-4o-mini to 2,540 in the case of
mixtral-8x7b-instruct.

• codellama-13b-instruct is the only model that produces a
significant number of mutant candidates that are identical
to the original code fragments that they replace (922).

• None of the models produces a significant number of
duplicate mutant candidates.

• The number of mutants that remain after discarding
the invalid, identical, and duplicate mutant candidates
ranges from 5,402 in the case of mixtral-8x7b-instruct
to 6,823 in the case of llama-3.3-70b-instruct, with

codellama-34b-instruct producing almost as many valid
mutants (6,712).

• llama-3.3-70b-instruct produces the most surviving
mutants (3,423), followed by codellama-34b-instruct
(3,155).

We also explored the variability of results produced
using codellama-13b-instruct, mixtral-8x7b-instruct,
llama-3.3-70b-instruct and gpt-4o-mini by conducting
each experiment 5 times, and determined how many distinct
mutants are produced and how many mutants occur in all
five runs. We found that, at temperature 0.0, the results
obtained with codellama-13b-instruct are very stable across
runs, with 96.15%–100% of all mutants occurring in
each of the five runs. However, with mixtral-8x7b-instruct,
llama-3.3-70b-instruct, and gpt-4o-mini, we encountered more
variability. With mixtral-8x7b-instruct, between 34.22%–50%
of mutants occur in all five runs, with llama-3.3-70b-instruct,
between 28.26%–58.94% occur in all five runs, and with
gpt-4o-mini, between 28.26%–58.94%. Figure 10 visualizes
the variability of LLMorpheus across all configurations. The
figure shows, in the aggregate, for all 13 subject applications,
in how many runs each mutant was observed. We also
analyzed the variance of the number of mutants killed and
survived, finding that the mutation score was relatively
stable despite the diversity of mutants across trials. The
supplemental materials include tables showing the average
and standard deviation of the number of mutants killed and
survived.

We also examined the string similarity of mutants produced
by the five LLMs to the original code and found that the
mixtral-8x7b-instruct model tends to generate mutants with
the greatest string edit distance in the most projects. We
examined the top 2 mutants with the greatest string edit
distance generated by this model for each project, finding
several cases of unusual completions. In q, mixtral’s most
dissimilar mutants (distance 219) replaced a string literal that
referred to the function ”allResolved” with a declaration of the
same function. In delta, mixtral’s most dissimilar mutants
(distance 155) apply a reduce operation to an object before
invoking Object.keys on it. We saw similar trends for mixtral
across all projects, with mutants that tended to include long
code declarations. Examining the mutants with the greatest
string edit distance for the other four LLMs, we did not find
significant trends that held across all targets. Further details
can be found in the supplemental materials.

All five LLMs under consideration can successfully gener-
ate large numbers of (surviving) mutants. llama-3.3-70b-instruct
and codellama-34b-instruct tend to produce the largest number
of surviving mutants, and codellama-34b-instruct produces sta-
ble results across experiments when temperature 0.0 is used.
llama-3.3-70b-instruct, mixtral-8x7b-instruct, and gpt-4o-mini pro-
duce highly variable results, even at temperature 0.0.

H. RQ6: What is the cost of running LLMorpheus?
The primary costs of running LLMorpheus are the time

required to run experiments and the expenses associated with
LLM usage. Regarding the latter, for the experiments reported
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codellama-13b-instruct (run #354) mixtral-8x7b-instruct (run #360)
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Complex.js 1,410 339 116 28 955 553 401 1 1,272 310 0 15 962 589 373 0
countries-and-timezones 305 83 15 1 207 177 30 0 272 65 2 5 205 166 39 0
crawler-url-parser 494 186 51 12 247 129 118 0 411 165 0 3 234 130 104 0
delta 1,334 530 92 16 712 583 107 22 1,132 452 0 24 680 516 128 36
image-downloader 122 40 5 2 77 48 29 0 107 38 0 1 69 46 23 0
node-dirty 439 161 33 11 245 142 92 11 300 109 0 10 191 111 72 8
node-geo-point 390 64 21 16 304 237 67 0 341 88 0 11 247 166 81 0
node-jsonfile 191 43 10 7 138 43 45 50 155 23 0 4 132 54 32 46
plural 407 100 99 17 208 154 53 1 299 73 0 8 226 166 60 0
pull-stream 1,002 279 54 13 669 386 237 46 934 255 1 6 678 386 248 44
q 2,993 901 379 55 1,713 122 1,518 73 2,418 772 3 50 1,643 112 1,460 71
spacl-core 377 142 40 7 185 160 25 0 330 152 0 3 157 134 22 1
zip-a-folder 137 43 7 1 87 27 55 5 117 38 0 0 78 24 44 10
Total 9,601 2,911 922 186 5,582 2,761 2,777 209 8,088 2,540 6 140 5,402 2,600 2,686 216

llama-3.3-70b-instruct (run #23) gpt-4o-mini (run #58)
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Complex.js 1,417 279 0 53 1,138 690 447 1 1,432 446 0 38 986 596 390 0
countries-and-timezones 304 64 0 14 240 207 33 0 308 99 0 9 209 171 38 0
crawler-url-parser 506 175 0 22 319 208 111 0 516 227 0 11 275 181 94 0
delta 1,333 539 0 54 794 626 130 38 1,345 636 2 40 707 564 108 35
image-downloader 122 43 0 5 79 54 25 0 123 58 0 3 65 45 20 0
node-dirty 453 121 1 10 331 168 142 21 453 188 0 9 265 154 103 8
node-geo-point 399 39 0 22 358 255 103 0 399 86 0 20 311 225 86 0
node-jsonfile 198 25 0 6 173 64 37 72 198 44 0 6 154 64 26 64
plural 427 96 0 29 331 244 87 0 428 110 5 26 313 257 55 1
pull-stream 1,044 262 0 10 782 465 265 52 1,037 302 0 16 735 420 247 68
q 3,074 855 0 80 2,219 127 2,006 86 3,084 1,287 2 69 1,795 137 1,597 61
spacl-core 383 134 0 18 236 203 32 1 392 158 0 10 215 195 20 0
zip-a-folder 145 24 0 2 121 87 5 29 143 62 0 4 81 14 7 60
Total 9,805 2,656 1 325 6,823 3,398 3,423 300 9,858 3,703 9 261 5,885 3,023 2,791 297

TABLE VII
MUTANTS GENERATED WITH THE codellama-13b-instruct, mixtral-8x7b-instruct, llama-3.3-70b-instruct, AND gpt-4o-mini LLMS, USING THE FOLLOWING

PARAMETERS: TEMPERATURE: 0.0, MAXTOKENS: 250, TEMPLATE: template-full.hb, SYSTEMPROMPT: SystemPrompt-MutationTestingExpert.txt.

Fig. 9. Comparison of the number of mutant candidates and mutants generated with the codellama-13b-instruct, mixtral-8x7b-instruct, llama-3.3-70b-instruct,
and gpt-4o-mini LLMs at temperature 0.0. This chart was created from the data shown in Tables II and VII.
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codellama−13b−instruct−full−0.0
codellama−34b−instruct−basic−0.0

codellama−34b−instruct−full−0.0
codellama−34b−instruct−full−0.25
codellama−34b−instruct−full−0.5
codellama−34b−instruct−full−1.0

codellama−34b−instruct−full−genericsystemprompt−0.0
codellama−34b−instruct−noexplanation−0.0
codellama−34b−instruct−noinstructions−0.0

codellama−34b−instruct−onemutation−0.0
gpt−4o−mini−full−0.0

llama−3.3−70b−instruct−full−0.0
mixtral−8x7b−instruct−full−0.0

0 10000 20000
Number of Mutants

Number of trials observed 1 2 3 4 5

Fig. 10. Variability of mutants generated by LLMorpheus. For each replacement generated at each position, we count the number of trials (of 5 total) where
that replacement was generated.

on in this paper, we have relied on several commercial LLM
service providers (octo.ai, openrouter.ai, and openai.com).
Such costs tend to vary depending on the provider and the
LLM being used and are typically calculated as a function
of the number of “tokens” used in the prompt and the
completion15. The cost of commercial LLM providers also
tends to vary over time, and when a newer version of an LLM
is released, it often costs the same as the older version that
it replaced. In our experiments, the total number of tokens
used for running a full experiment with LLMorpheus varied
by less than 20% for the five LLMs that we used16, suggesting
that token usage is a reasonable proxy for the financial costs
incurred. For these reasons, we use the number of input
and output tokens used in our experiments as the primary
cost metric for evaluating LLMorpheus’s LLM usage. For
completeness, we also discuss the expense in US dollars at the
time of running the experiments below, but the reader should
be aware that these costs are likely to vary over time.

The time column in Table VIII shows the time needed
to run LLMorpheus and the modified version of StrykerJS
on each subject application. As can be seen in the table,
LLMorpheus requires between 430.53 seconds (about 7 min-
utes) and 5,241.46 seconds (about 87 minutes) and StrykerJS
between 155.24 seconds (about 2.5 minutes) and 14,034.67
seconds (about 234 minutes).

The last three columns of Table VIII show the number
of tokens used in prompts and completions for each sub-
ject application and in the aggregate. From these results,
it can be seen that running LLMorpheus required between
24,655 and 2,127,655 prompt tokens and between 9,134
and 220,215 completion tokens. Hence, in the aggregate,
5,841,112 prompt tokens and 721,984 completion tokens were
required. At the time of conducting the experiments, the
cost of the codellama-34b-instruct LLM using octo.ai’s LLM

15Depending on the provider, the number of requests may also incur
additional costs, though that was not the case for our experiments.

16Calculated from the total number of tokens reported in the Supplemental
Materials associated with this paper for experiments using the “full’ prompt
template at temperature 0.0.

project time (sec) #tokens
LLMorpheus StrykerJS prompt compl. total

Complex.js 3,050.00 637.85 967,508 102,517 1,070,025
countries-and-timezones 1,070.89 313.86 105,828 23,441 129,269
crawler-url-parser 1,642.70 929.43 386,223 39,175 425,398
delta 2,961.66 3,839.60 890,252 98,974 989,226
image-downloader 430.53 379.25 24,655 9,134 33,789
node-dirty 1,526.20 241.81 246,248 33,070 279,318
node-geo-point 1,411.11 987.17 316,333 30,013 346,346
node-jsonfile 690.61 474.78 57,516 14,797 72,313
plural 1,521.32 155.24 265,602 34,174 299,776
pull-stream 2,492.50 1,608.97 208,130 76,513 284,643
q 5,241.46 14,034.67 2,127,655 220,215 2,347,870
spacl-core 1,351.08 798.96 162,705 29,236 191,941
zip-a-folder 500.57 1,156.11 82,457 10,725 93,182
Total 23,890.64 25,557.70 5,841,112 721,984 6,563,096

TABLE VIII
RESULTS FROM LLMORPHEUS EXPERIMENT (RUN #312). MODEL:

codellama-34b-instruct, TEMPERATURE: 0.0, MAXTOKENS: 250,
TEMPLATE: template-full.hb, SYSTEMPROMPT:

SystemPrompt-MutationTestingExpert.txt

service was $0.50 per million input tokens and $1.00 per
million output tokens, so for running LLMorpheus on all 13
applications, a total cost of approximately $3.62 was incurred.
Moreover, at the time of conducting our experiments, the
llama-3.3-70b-instruct model that we used can be accessed
from $0.12 per million input tokens and $0.30 per million
output tokens at openrouter.ai, and the gpt-4o-mini model
that we used can be accessed from $0.15 per million input
tokens and $0.60 per million output tokens from openai.
com. Hence, a full experiment can be run for less than $1
with llama-3.3-70b-instruct, and for approximately $1.30 with
gpt-4o-mini.

It should be pointed out that the cost of the LLMs we
used is significantly lower than that of larger state-of-the-
art proprietary LLMs such as OpenAI’s gpt-4o, for which
https://openai.com/pricing quotes a cost of $2.50 per million
input tokens and $10 per million output tokens at the time of
writing. While such models might be even more capable of
suggesting useful mutants, it is encouraging to see that lower-
cost LLMs can achieve good results.

octo.ai
openrouter.ai
openai.com
octo.ai
openrouter.ai
openai.com
openai.com
https://openai.com/pricing
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package description issue/bug # SHA same code change(s) same test failure(s) different test failure(s)
css-loader CSS files 663 d1d8221 ✁
css-loader CSS files 789 e3bb83a ✁
css-loader CSS files 1036 ded2a79 ✁
css-loader CSS files 1261 729a314 ✁
compression file compression 170 b7d5d77 ✁
countries-and-timezones accessing country/timezone data 60 97a106f ✁
express.js web application framework 2 — ✁
fast-glob file system 223 05a4c08 ✁
fast-glob file system 391 eb55d1d ✁
fast-xml-parser XML parsing 234 ea5d544 ✁
fast-xml-parser XML parsing 595 b0ea635 ✁
fs-extra file system 190 e05c685 ✁
fs-extra file system 291 2e7f755 ✁
fs-extra file system 679 7c251d6 ✁
hessian serialization 4 — ✁
hexo blogging framework 12 — ✁
htmlparser2 HTML parsing 746 214ab08 ✁
htmlparser2 HTML parsing 913 04c411c ✁
jsdiff file comparison 94 d76ac52 ✁
jsdiff file comparison 118 4a899c0 ✁
jsdiff file comparison 217 6464b29 ✁
jsdiff file comparison 493 f38e47d ✁
karma testing framework 4 — ✁
memfs in-memory file system 59 b90c016 ✁
memfs in-memory file system 391 301f2d1 ✁
memfs in-memory file system 853 8b021b3 ✁
memfs in-memory file system 870 7c5999c ✁
memfs in-memory file system 1024 711c4bd ✁
memfs in-memory file system 1093 ede0f4f ✁
node-jsonfile reading/writing JSON files 24 c2c8a2c ✁
node-jsonfile reading/writing JSON files 25 afaba5d ✁
normalize-url URL utilities 38 6078d91 ✁
normalize-url URL utilities 82 191ad4b ✁
simple-statistics statistics 334 522a716 ✁
simple-statistics statistics 633 6547df7 ✁
yargs command-line arguments 1364 35d777c ✁
yargs command-line arguments 1376 3d26d11 ✁
yargs command-line arguments 1422 9a42b63 ✁
yargs command-line arguments 1493 63b3dd3 ✁
yargs command-line arguments 2171 f91d9b3 ✁
Total: 40 10 26 4

TABLE IX
RESULTS OF CASE STUDY INVESTIGATING WHETHER LLMorpheus CAN GENERATE MUTANTS THAT ARE SIMILAR TO REAL BUGS. EACH ROW OF THE
TABLE CORRESPONDS TO ONE BUG, FOR WHICH THE FIRST FOUR COLUMNS OF THE TABLE STATE THE NAME AND DESCRIPTION OF THE PACKAGE,

ISSUE/BUG NUMBER, AND COMMIT ID (SHA) CONTAINING THE BUG FIX. THE LAST THREE COLUMNS CLASSIFY EACH BUG INTO ONE OF THE
FOLLOWING CATEGORIES: “SAME CODE CHANGE(S)” MEANS THAT LLMorpheus GENERATES AT LEAST ONE MUTANT THAT CONTAINS THE SAME CODE

CHANGE(S) AS THE BUG and CAUSES THE SAME TEST FAILURE(S), “SAME TEST FAILURE(S)” MEANS THAT LLMorpheus GENERATES AT LEAST ONE
MUTANT THAT IS NOT SYNTACTICALLY THE SAME AS THE BUG BUT CAUSES THE SAME TEST FAILURE(S) (POSSIBLY ALSO CAUSING OTHER TESTS TO

FAIL), AND “DIFFERENT TEST FAILURES” MEANS THAT LLMorpheus DOES NOT GENERATE AT LEAST ONE MUTANT THAT CAUSES THE SAME TEST
FAILURE(S).

LLMorpheus requires between 7 and 87 minutes to generate mutants
for 13 subject applications. At the time of conducting our experi-
ments, a full experiment with LLMorpheus on all 13 applications
costs up to $3.62 depending on the LLM being used, suggesting that
cost is not a prohibitive limiting factor.

I. RQ7: Is LLMorpheus capable of producing mutants that
resemble existing bugs?

To determine whether LLMorpheus is capable of producing
mutants that resemble existing bugs, we conducted a case
study involving 40 real-world bugs, shown in Table IX.
The construction of this dataset was previously discussed in
Section IV-B(d). In this study, we applied LLMorpheus to
the fixed version of a program by introducing placeholders
near the location of the fix, generating mutants, executing the
program’s tests for each of these mutants, and checking if the
observed test failures were identical to those caused by the
original bug. We considered two failures to be the same if

the same error message and stack trace were produced. This
task involves significant manual effort and time as it involves
executing all tests for each mutant and manually comparing
the behavior of the test failures caused by mutants against test
failures caused by the original bug. Given the potential non-
determinism inherent to LLMorpheus, we repeat this mutant
generation, test execution and manual inspection process a
total of five times per-bug. Our artifact contains complete
details on each of the bugs examined, showing the buggy
code and mutant side-by-side, along with our comments and
analysis.

For each bug, Table IX shows the name and description
of the package, the issue number associated with the bug
in the repository’s issue tracker, and the commit ID (SHA)
containing the fix. Further details about these bugs, the mutants
produced by LLMorpheus, and the test results obtained with
each mutant are included in our artifact.

The last three columns of the table show, for each bug, to

https://github.com/webpack-contrib/css-loader
https://github.com/webpack-contrib/css-loader
https://github.com/webpack-contrib/css-loader
https://github.com/webpack-contrib/css-loader
https://github.com/expressjs/compression
https://github.com/manuelmhtr/countries-and-timezones/
https://bugsjs.github.io/
https://github.com/mrmlnc/fast-glob
https://github.com/mrmlnc/fast-glob
https://github.com/NaturalIntelligence/fast-xml-parser
https://github.com/NaturalIntelligence/fast-xml-parser
https://github.com/jprichardson/node-fs-extra
https://github.com/jprichardson/node-fs-extra
https://github.com/jprichardson/node-fs-extra
https://bugsjs.github.io/
https://bugsjs.github.io/
https://github.com/fb55/htmlparser2
https://github.com/fb55/htmlparser2
https://github.com/kpdecker/jsdiff
https://github.com/kpdecker/jsdiff
https://github.com/kpdecker/jsdiff
https://github.com/kpdecker/jsdiff
https://bugsjs.github.io/
https://github.com/streamich/memfs
https://github.com/streamich/memfs
https://github.com/streamich/memfs
https://github.com/streamich/memfs
https://github.com/streamich/memfs
https://github.com/streamich/memfs
https://github.com/jprichardson/node-jsonfile/
https://github.com/jprichardson/node-jsonfile/
https://github.com/sindresorhus/normalize-url
https://github.com/sindresorhus/normalize-url
https://github.com/simple-statistics/simple-statistics
https://github.com/simple-statistics/simple-statistics
https://github.com/yargs/yargs
https://github.com/yargs/yargs
https://github.com/yargs/yargs
https://github.com/yargs/yargs
https://github.com/yargs/yargs
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Fig. 11. Patch corresponding to bug #2 in express.js [27].

what extent the mutants produced by LLMorpheus mimic the
original bug. We classify the bugs into the following three
categories:

same code change(s). This means that LLMorpheus gener-
ates at least one mutant that contains the same code change(s)
as the bug and causes the same test failures,

same test failure(s). This means that LLMorpheus generates
at least one mutant that is not syntactically the same as the
bug but results in the same test failure(s) as the bug (possibly
also causing other tests to fail), and

different test failures. This means that LLMorpheus does
not generate at least one mutant that causes the same test
failure as the bug.

As can be seen from the table, for 10 of the 40 bugs,
LLMorpheus produced mutants consisting of code fragments
that are syntactically identical to the original bug and that
caused the same test failures. Moreover, in an additional 26
cases, LLMorpheus produced mutants that caused the same test
failures as the ones caused by the original bug. In only 4 cases
did LLMorpheus not produce any mutants that cause similar
test failures as the original bugs. In addition, it should be noted
that, of the 40 bugs under consideration, 35 involved a patch
that involved complex changes that do not correspond to the
application of a traditional mutation operators (e.g., changing
conditions by adding/removing subconditions, referencing dif-
ferent variables, calling different/additional functions, adding
arguments in function calls, changing regular expression lit-
erals, etc.) This means that a traditional mutation testing tool
such as StrykerJS would be unable to reproduce these bugs
exactly (though it might still be able to create mutants that
produce the same failures).

Our artifact contains details regarding all of the bugs that
we studied. Below, we report on our findings for four of the
bugs in more detail.

a) Express.js Bug#2: Figure 11 shows the patch for bug
#2 in Express, a popular web framework for Node.js. This
bug occurs at line 361 in the file lib /request.js and involves
the invocation of a function trust with a single argument this
.connection.remoteAddress. Here, the fix involved the addition
of a second argument, 0. Reintroducing this bug in the fixed
version causes two tests to fail. When applied to the fixed
version, LLMorpheus creates the following three mutants:

• replacing ! trust (this .connection.remoteAddress, 0) with trust
(this .connection.remoteAddress, 1)

• replacing ! trust (this .connection.remoteAddress, 0) with !
trust (this .connection.remoteAddress)

• replacing ! trust (this .connection.remoteAddress, 0) with trust
(this .connection.localAddress, 0)

The second mutant is identical to the original bug. The other
two mutants cause multiple test failures that differ from those
caused by the original bug.

Fig. 12. Patch corresponding to bug #4 in hessian.js [27].

Fig. 13. Patch corresponding to issue #1024 in memfs.

Given the possibility of non-determinism impacting this
experiment, we conducted five repeated trials17. We found that
in some cases, LLMorpheus produces mutants such as ! trust (
this .connection.localAddress, 1) that differ from the original bug
but cause the same test failures. Moreover, in one experiment,
LLMorpheus produced a mutant !this .app.get(’ trust proxy’) that
reproduces one of the two test failures caused by the original
bug.

b) Hessian.js Bug#4: Figure 12 shows the patch for bug
#4 in Hessian, a serialization framework. This bug occurs at
line 302 in file lib /v1/encoder.js and involves the condition of
an if -statement. Here, the fix for the bug involves changing
the condition from is .nullOrUndefined(obj) to is .nullOrUndefined(
obj) || ( is . string (obj.$class) && is.nullOrUndefined(obj.$)). Reintro-
ducing this bug in the fixed version results in a test failure.

When applied to the fixed version, LLMorpheus creates the
following 3 mutants:

• replacing is .nullOrUndefined(obj) || ( is . string (obj.$class) &&
is.nullOrUndefined(obj.$)) with obj === null,

• replacing is .nullOrUndefined(obj) || ( is . string (obj.$class) &&
is.nullOrUndefined(obj.$)) with is .nullOrUndefined(obj.$)

• replacing is .nullOrUndefined(obj) || ( is . string (obj.$class) &&
is.nullOrUndefined(obj.$)) with !obj

In this case, none of the generated mutants are identical to
the original bug. However, the first and the third mutants
cause exactly the same test failures as the original bug. The
second mutant causes multiple test failures that differ from
those produced by the original bug. We repeated the same
experiment four more times, and while LLMorpheus never
reproduced the original bug, it produced mutants with the same
behavior as the original bug on multiple occasions.

c) memfs issue#1024: Figure 13 shows the bug fix for
issue #1024 in memfs, an in-memory file system for Node.js.
Reintroducing the bug in the patched version results in failures
in three tests for the readdirsync function. Here, the fix involves
replacing a method call link .getPath() on line 18 in file src/DirEnt
. ts with a call link .getParentPath().

When applied to this line, LLMorpheus creates the following
three mutants:

• replacing link .getParentPath with link .getPath,
• replacing link .getParentPath with link .getName, and
• replacing link .getParentPath with ’ ’ .

The first mutant is identical to the original bug, the second
mutant results in code that violates TypeScript’s typing rules,

17Data for five experiments with each of the 40 bugs is included with
supplemental materials.
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Fig. 14. Patch corresponding to issue #1364 in yargs.

and the third mutant causes three test failures that differ from
those caused by the original bug. We repeated the experiment
four more times and observed that the original bug was
reproduced during one of the other runs.

d) yargs issue#1364: Figure 14 shows the bug fix
for issue #1364 in yargs, a popular framework for pars-
ing command-line arguments. Reintroducing the bug in the
patched version results in a single test failure. Here, the
fix involves changing the condition of an if statement on
line 105 in file lib / validation . js from commandKeys.length > 0) to
(currentContext.commands.length > 0)|| (commandKeys.length > 0)).

Here, LLMorpheus creates three mutants:
• replacing (currentContext.commands.length > 0)|| (

commandKeys.length > 0) with (currentContext.commands.
length > 0)|| (commandKeys.length > 0),

• replacing (currentContext.commands.length > 0)|| (
commandKeys.length > 0) with (currentContext.commands.
length === 0)&& (commandKeys.length === 0), and

• replacing (currentContext.commands.length > 0)|| (
commandKeys.length > 0) with argv. .length > 0.

The first of these mutants causes two test failures, of which
one is identical to the test failure caused by the original bug,
the second mutant causes five test failures, of which one is
identical to the test failure caused by the original bug, and the
third mutant survives, i.e., it does not cause any test failures.
We repeated the experiment four more times, and each time,
at least one mutant was produced that triggered the same test
failure as the original bug, along with a few additional test
failures.

For the 40 bugs under consideration in the case study, LLMorpheus
was able to produce mutants that are syntactically identical to the
buggy code fragments in 10 cases, and mutants that produce the
same test failures as the original bug in an additional 26 cases.
This provides evidence that LLMorpheus is capable of generating
mutants whose behavior resembles that of real-world bugs and that
this capability is not entirely due to training-set leakage.

J. Experimental Data
All experimental data associated with the experiments re-

ported on in this paper can be found at https://github.com/
neu-se/mutation-testing-data.

V. THREATS TO VALIDITY

The projects used to evaluate LLMorpheus may not be
representative of the entire ecosystem of JavaScript packages.
To mitigate this risk, we select popular packages used in
prior JavaScript testing tool evaluations and report results per
project, discussing the full range of behaviors we witness. As
in many evaluations of LLM-based tools, the validity of our
conclusions may be threatened by including our evaluation
subjects in the training data for the models. If the model

were trained on bugs in some of the programs we asked it
to create bugs in, one would expect its performance on those
programs to vary significantly from those on which it was not
pre-trained. We mitigate this risk by conducting experiments
with five LLMs, four of which are “open” in the sense that the
training process is documented, thus enabling reproducibility
and detailed analysis of experimental results.

Truly determining if a mutant is equivalent requires sig-
nificant effort and despite the best efforts of two authors to
evaluate them rigorously, there may be errors in categorizing
mutants. We interpret the high degree of inter-rater reliability
(ω = 0.846) as a reasonable assurance of the reliability of this
process.

One of the key evaluation criteria used in previous work
on mutation testing is “coupling”, i.e., determining whether a
test suite that detects particular mutants also detects particular
real faults [5], [6], [26]. We investigated the feasibility of
conducting such a study using the Bugs.js suite [27], but we
found that most of these subjects could not be used at all due
to their reliance on outdated versions of various libraries and
because of their incompatibility with modern Node.js versions
that StrykerJS requires, causing them to be incompatible with
LLMorpheus. These projects also have flaky tests, making it
particularly challenging to perform mutation analysis [28]. We,
therefore, opted for conducting a case study involving 40 real-
world bugs, including 4 real-world bugs from the Bugs.js suite
that we were able to reproduce reliably and an additional 36
bugs taken from a variety of real-world Node.js applications
for which we manually identified an issue in the project’s issue
tracker that reported the problem and a subsequent bug-fix
commit. For these 40 bugs, LLMorpheus produced mutants
that replicated the code changes from the original bug in 10
cases, and it produced mutants that replicated the test failures
caused by the original bug in an additional 26 cases, suggesting
that LLMorpheus can produce mutants that behave similarly
to existing bugs in most cases. The results of this case study
may be skewed because the code for previous buggy versions
of the applications may have been included in the training set
of the LLM that we used. However, the fact that LLMorpheus
frequently produced mutants in the case study that differed
from the original bug but caused the same test failures suggests
that LLMorpheus’s ability to produce mutants that resemble
real-world bugs is not entirely due to training-set leakage. The
results of the case study may also have been skewed by the
selection of the subject applications in the case study and by
our focus, for pragmatic reasons, on bugs for which the fix
involves a small number of lines of code.

As a deliberate design choice, LLMorpheus employs a fixed
strategy for introducing placeholders, as illustrated in Figure 6,
which precludes the creation of mutants at certain locations,
thus potentially limiting its effectiveness. However, traditional
mutation testing tools such as StrykerJS are similarly limited
by applying mutations only in selected locations and are addi-
tionally limited by restricting mutations to a fixed repertoire of
mutation operators. Moreover, our current placeholder strategy
has been shown to be effective at producing large numbers of
(surviving) mutants and at producing mutants that resemble
real-world bugs. Exploring mechanisms that allow users to

https://github.com/neu-se/mutation-testing-data
https://github.com/neu-se/mutation-testing-data
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specify placeholder schemes, e.g., as a predicate on AST
nodes, is a topic for future work.

Evaluating tools that rely on LLMs face significant repro-
ducibility challenges. We mitigate these risks by (i) evaluating
LLMorpheus using four open LLMs that are version-controlled
and permanently archived (in addition to one popular pro-
prietary LLM), (ii) repeating each experiment 5 times and
(iii) making all experimental data available as supplemental
materials, and (iv) making LLMorpheus, our evaluation scripts
and results publicly available. Including all results for all
experiments in the main body of this paper would significantly
decrease the readability of the work. Where we observed
significant variability in results, we include data regarding that
distribution in the paper directly. In all cases, the supplemental
materials associated with this paper include results for all
trials of all experiments and summary tables that describe the
observed variability for each configuration.

Lastly, a possible concern is that LLMorpheus only supports
JavaScript and TypeScript, and its applicability beyond these
languages may be unclear. Implementing the same approach
for a different language would involve various steps (parsing
ASTs, executing tests, etc.) that are language-specific and
would involve significant engineering effort, but should other-
wise be straightforward.

VI. RELATED WORK

Mutation testing, first introduced in the 1970’s [4], has
a long history [31]. The era of “big code” and software
repository mining has enabled the large-scale evaluation of the
core hypothesis behind mutation testing: mutants are coupled
to real faults. Just et al. mined real faults from Java applica-
tions and found a statistically significant correlation between
mutation detection and real fault detection [5]. This finding has
since been replicated on newer, larger datasets of faults from
even more Java programs [6]. Gay and Salahirad extended
this methodology to examine the extent to which individual
mutation operators are most coupled to real faults [26]. While
this has demonstrated that test suites that detect more mutants
are also likely to detect more bugs, it also underscores the need
for new mutation approaches that can generate faults coupled
to more real bugs.

ML for Mutation Testing: Several recent projects have
considered using LLMs and other AI-based techniques for
mutation testing. µBert [32], [33] resembles LLMorpheus in
that both techniques select some designated code fragments,
and query a model what they could be replaced with. µBert
masks one token at a time, so its mutations involve changes
to a single variable or operator. By contrast, LLMorpheus’
placeholders correspond to (sequences of) AST nodes, so it
may suggest mutations involving more significant changes
to complex expressions. A crucial difference between the
techniques is that LLMorpheus utilizes prompts that provide
an LLM with additional guidance, whereas µBert provides
no way of guiding the mutations at all and is, therefore,
completely at the mercy of what the model thinks masked
tokens should be replaced with. In our experiments with dif-
ferent prompts (Section IV-F), the basic prompt is analogous

to µBert in that it merely asks the LLM what placeholders
should be replaced with. Our results show this to be much less
effective at producing interesting mutants, thus demonstrating
the usefulness of including additional information in prompts.
Our work also differs from [32] by considering several LLMs
and different temperatures and targeting a different language.

In recent work, Garg et al. [34] explore the coupling
between mutants generated using µBert and 45 reproducible
vulnerabilities from the Vul4J dataset. They distinguish be-
tween strongly coupled mutants that fail the same tests for the
same reasons as the vulnerabilities and test coupled mutants
that fail the same tests but for different reasons. While they
find the majority (32 of 45) of µBert-generated mutants to be
strongly coupled, they also find that strongly coupled mutants
are scarce, representing just 1.17% of killable mutants. It
would be interesting to explore whether the use of more
elaborate prompting strategies, such as those employed by
LLMorpheus could be used to increase the ratio of strongly
coupled mutants.

Tian et al. [35] consider the use of LLMs for determining
whether mutants are equivalent and compare their effective-
ness to that of traditional techniques for mutant equivalence
detection. Their study considers the detection of equivalent
mutants in 19 Java programs from the MutantBench suite [36],
from which mutants were derived using standard mutation
operators from µJava [37]. Tian et al. experimented with 10
LLMs. They consider 10 state-of-the-art LLMs and several
strategies for fine-tuning and prompting, and consider three
widely used traditional techniques (compiler-based, ML-based,
and Tree-Based Neural NetWork) as the baseline for compar-
ison. Their results indicate that LLMs are significantly better
than traditional techniques at equivalent mutant detection, with
the fine-tuned code embedding strategy being the most effec-
tive. It would be interesting to explore to what extent these
results carry over to detecting mutants that were produced
using LLMs using tools such as LLMorpheus.

Similar to our interests, Wang et al. [38] perform an
exploratory study on using large language models to generate
mutants. Unlike our prompting strategy that generates up to
three mutants per-AST node, Wang et al. explore a strategy
that generates mutants at the granularity of entire methods.
We demonstrate the nuances of prompt engineering in this
context by exploring performance under different prompts
(RQ4). These complementary works demonstrate the potential
of using LLMs for mutation testing.

Several projects [39], [40] have considered the use of LLMs
as mutation operators in the context of Genetic and Search-
Based techniques to improve the efficiency of the search.
Brownlee et al. [40] consider the generation of alternate
implementations for methods and experimented with prompts
exhibiting different levels of detail, similar to our experiments
reported on in Section IV-F, finding that more detailed prompt-
ing generally improves the number of successful patches.

Several other works rely on LLMs to validate the results
of mutation testing tools. Li and Shin [41] use 4 syntactic
mutation operators and then observe the change to the natural
language description that an LLM generates of the mutated
code. MuTAP [42] uses an off-the-shelf syntactic mutation tool
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to generate mutants for a Python program and then prompts
an LLM to generate a test that can detect those mutants.

Equivalent Mutants: Kushigian et al. [43] study the types
and prevalence of equivalent mutants in Java programs, con-
sidering why they are equivalent and how challenging it
is to detect that they are. Their study considers 19 Java
open-source programs from which mutants are derived using
Major [11], a rule-based mutation-testing framework for Java
that supports similar mutation operators as StrykerJS. Their
findings indicate that around 3% of mutants are equivalent,
and these equivalent mutants are further classified according
to criteria that reflect why a mutant is equivalent, and how this
could be determined. Based on these findings, Kushigian et al.
propose Equivalent Mutant Suppression (EMS), a collection of
simple static checks for detecting equivalent mutants.

Improving Mutation operators: Other approaches for
mutation testing aim to generate mutants that represent a wider
variety of faults. “Higher-order mutation” combines multiple
mutations concurrently, creating more complex faults, but still
limited by the set of operators implemented [8], [44]. More
recently, Brown et al. improve mutation by mining patches
for new idioms to use as mutation operators [45]. Beller et al.
design a similar tool and evaluate it at Facebook, with the goal
of increasing adoption of mutation testing [46] Taking this idea
further, Tufano et al. create DeepMutation, an approach that
learns models for performing mutation from real bugs [14].
This idea was refined by Tian et al.’s LEAM, which improves
the search process by leveraging program grammars [15].
Patra and Pradel’s SemSeed learns to generate mutants from
fixes of real-world identifier and literal semantic bugs [16].
Unlike these approaches, LLMorpheus uses a pre-trained LLM,
requiring no training to apply it to a new project.

Mutation Testing Applications and Tools: Belén Sánchez
et al. [47] report on a results of a qualitative study among
open-source developers on the use of mutation testing. Their
findings indicate that developers find mutation testing useful
for improving test suite quality, detecting bugs, and improving
code maintainability and performance considerations are the
biggest impediments to adoption. Much of the research ad-
vancing the state of mutation testing tooling has targeted Java,
such as MuJava [37], Javalanche [48], Jumble [49], Judy [50]
and Major [11]. Gopinath et al. empirically compared two
of these research-oriented tools tools (Judy [50], Major [11])
with an industry-oriented tool (Pit [9]), finding that despite the
stated similarities between the tools, each produced a some-
what different set of mutants [51]. Pit is actively maintained,
and the open-source tool is also available packaged with
professional plugins under the name ‘ArcMutate’ [10]. Also
aimed at practitioners, the Stryker mutation tool is a framework
that supports code written in JavaScript, TypeScript, C#, and
Scala [12]. We build LLMorpheus atop Stryker. Deb et al.
examine a new, language-agnostic approach to generating
mutants using regular expressions [52]. Future work may
examine the feasibility of implementing LLMorpheus using
this approach.

Mutation and Test Generation: There is a long line of
research on test-generation techniques that specifically target
mutated code. DeMillo and Offutt [53] presented a technique

that relies on solving systems of algebraic constraints to derive
test cases that target mutated code. Fraser and Zeller [54]
present µTEST, an approach that automatically generates unit
tests for object-oriented classes based on mutation analysis.
Their test generation technique uses mutations as the coverage
criterion that it aims to maximize and creates tests containing
oracles that test the mutated value. Chekam et al. [55] present
a test generation technique based on symbolic execution that
systematically searches for situations where program behaviors
of the original program diverges from that of mutated versions.
Lee et al. [56] present a grey-box fuzzing technique that
involves executing both the original and the mutated code
in the same fuzzing driver to direct the generation of test
inputs toward those that kill mutants. Adapting LLM-based
test generation techniques [25], [57], [58] to target mutated
code would be an interesting topic for future work.

LLMs and Testing: Beyond mutation testing, LLMs have
also been used for test generation. Bareiß et al. [58] present
an approach for test generation that follows a few-shot learn-
ing paradigm, outperforming traditional feedback-directed test
generation [59]. Tufano et al. [57] present an approach for
test generation using a BART transformer model [60] that is
fine-tuned on a training set of functions and corresponding
tests. Lemieux et al. [29] present an approach where tests
generated by Codex are used to assist search-based testing
techniques [61] in situations where such techniques get “stuck”
because the generated test cases diverge too far from the
expected uses of the code under test. TestPilot [25] produces
unit tests for JavaScript programs by prompting an LLM with
the start of a test for an API function, with information about
that function (signature, body, and usage examples mined
from project documentation) embedded in code comments.
In response, the LLM will produce a candidate test, which
it executes to determine whether it passes or fails. In case of
failure, TestPilot attempts to fix the failing test by re-prompting
the LLM with the error message. In principle, LLMorpheus
can be used to evaluate such test generation techniques by
providing a means to assess the quality of the generated tests.

VII. CONCLUSIONS AND FUTURE WORK

We have presented LLMorpheus, an LLM-based technique
for mutation testing. In this approach, code fragments at
designated locations in the program’s source code are replaced
with the word “PLACEHOLDER”, and an LLM is given a
prompt that includes: general background on mutation testing,
the original code fragment, and instructions directing the LLM
to replace the placeholder with a buggy piece of code. The
mutants produced by LLMorpheus are passed to a modified
version of the popular StrykerJS mutation testing tool, which
runs the tests, classifies mutants, and creates an interactive
web page for inspecting the results.

An empirical evaluation on 13 subject applications demon-
strates that LLMorpheus can produce mutants that resemble
real bugs that cannot be produced using standard mutation
operators. We found that the majority (80%) of surviving
mutants produced by LLMorpheus are behavioral changes
and that 20% of them are equivalent mutants. Experiments
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with variations on the prompt template reveal that the “full”
template that includes all information performs best and that
omitting parts of the information from this template matters to
varying degrees. From experiments with five LLMs, we found
that llama-3.3-70b-instruct and codellama-34b-instruct gener-
ally produced the largest number of mutants and surviving
mutants. Moreover, in a case study involving 40 real-world
bugs, we found that LLMorpheus produced mutants that are
syntactically identical to the buggy code fragments in 10 cases
and mutants that produce the same test failures as the original
bug in an additional 26 cases. These results provide strong
evidence that LLMorpheus is capable of generating mutants
whose behavior resembles that of real-world bugs and that
this capability is not entirely due to training-set leakage.

The number of mutants produced by LLMorpheus can
become quite large, and executing them can take considerable
time. In future work, we plan to explore techniques for pruning
and prioritizing mutants, focusing particularly on reducing the
number of equivalent mutants. From a manual investigation
of 105 equivalent mutants, we observed several common
patterns, such as replacing an condition !x with x === null
or x === undefined or replacing call to String .substring with

calls to String .substr and String . slice , two methods with similar
semantics. We expect that most of these equivalent mutants
can be filtered out using simple AST-based analysis. However,
further investigation is needed because some mutants that
cause behavioral differences are syntactically similar to these
patterns. This means that any pattern-matching-based approach
should consider the context of the mutation to determine
whether a mutant is likely to be equivalent. To deal with more
challenging cases, future work could also explore the use of
symbolic execution or efficient formal reasoning techniques
for automatically identifying mutants that are likely to be
equivalent.

LLMorpheus currently employs a fixed strategy for intro-
ducing placeholders, as illustrated in Figure 6. While this
strategy has been shown to be effective at producing large
numbers of (surviving) mutants and at producing mutants that
resemble real-world bugs, it precludes the creation of mutants
at locations that do not match this strategy. As future work,
we plan to explore mechanisms that allow users to specify a
placeholder scheme, e.g., as a predicate on AST nodes.

In our research, we used LLMs in their default configuration
without any fine-tuning. The strong results obtained with the
relatively small codellama-34b-instruct LLM that is trained
for code-related tasks suggests that fine-tuning an LLM for
the specific task of mutation testing might be worthwhile,
particularly to optimize the number of mutants that are not
equivalent.
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