
Increasing the Responsiveness of Web Applications
by Introducing Lazy Loading

Anonymous Author(s)

Abstract—Front-end developers want their applications to con-1

tain no more code than is needed in order to minimize the amount2

of time that elapses between visiting a web page and the page3

becoming responsive. However, front-end code is typically written4

in JavaScript, the ubiquitous “language of the web”, and tends to5

rely heavily on third-party packages. While the reuse of packages6

improves developer productivity, it is notorious for resulting in7

very large “bloated” applications, resulting in a degraded end-8

user experience. One way to combat such bloat is to lazily load9

external packages on an as-needed basis, for which support was10

added to JavaScript in 2020 when asynchronous, dynamic imports11

were added to the language standard. Unfortunately, migrating12

existing projects to take advantage of this feature is nontrivial, as13

the code changes required to introduce asynchrony may involve14

complex, non-local transformations.15

In this work, we propose an approach for automatically16

introducing lazy loading of third-party packages in JavaScript17

applications. Our approach relies on static analysis to identify18

external packages that can be loaded lazily and generates the code19

transformations required to lazily load those packages. Since the20

static analysis is unsound, these transformations are presented as21

suggestions that programmers should review and test carefully.22

We implement this approach in a tool called Lazifier, and evaluate23

Lazifier on 10 open-source front-end JavaScript applications,24

showing that each application was successfully refactored, reduc-25

ing initial application size and load times in all cases. On average,26

for these applications, Lazifier reduces initial application size by27

36.2%, initial load time by 29.7%, and unsoundness did not arise28

in any of these applications.29

Index Terms—JavaScript, client-side, refactoring, static anal-30

ysis, lazy loading, dynamic loading31

I. INTRODUCTION32

In web application development, it is highly desirable to33

minimize the time it takes for an application to load and34

become responsive [1]–[4]. Therefore, developers generally35

aim to keep the size of their distribution as small as possi-36

ble and rely on tools such as bundlers, minifiers, and tree-37

shakers [5]–[8] to minimize code size. Unfortunately, such38

tools are of limited use in scenarios where an application39

contains functionality that is (potentially) required, but not im-40

mediately on application startup. In such cases, responsiveness41

can be improved by loading the code associated with such42

functionality asynchronously, if or when its first use occurs.43

In this work, we propose an approach for automatically44

refactoring applications to introduce lazy loading. We are45

targeting a specific scenario where the functionality to be46

loaded lazily is isolated in a third-party library that is imported47

by the application under consideration. Our approach relies on48

static analysis to identify packages that are only used in the49

context of event-handling code, as they are likely only needed50

conditionally (or at least not needed on startup). Then, for51

each of these packages, another static analysis establishes the 52

extent of the code that needs to be modified to accommodate 53

asynchronous, lazy loading of the package. Finally, a set of 54

declarative rewrite rules specifies the code changes required 55

to transform the application. 56

We implemented this approach in a tool called Lazifier that 57

targets the JavaScript programming language (ECMAScript 58

2021). Similar to recent other refactoring tools [9]–[11], 59

Lazifier employs unsound static analysis, so the proposed code 60

transformations are presented as suggestions that programmers 61

should review and test carefully before applying. In an exper- 62

imental evaluation on 10 open-source client-side JavaScript 63

applications, the code transformations proposed by Lazifier 64

resulted in an average initial application size reduction of 65

36.2%, which caused applications to speed up initial load time 66

by 29.7% on average. Furthermore, we found that the actual 67

lazy loading of packages affected by the transformations incurs 68

little overhead. Finally, despite the potential for unsoundness in 69

the static analysis, we found that none of the transformations 70

proposed by Lazifier for the 10 subject applications caused 71

unwanted behavioral differences. 72

In sum, the contributions of this paper are as follows: 73

• A fully automated approach for identifying packages that 74

can be loaded lazily, and a set of rewrite rules specifying 75

how to refactor an application to load those packages 76

lazily; 77

• An implementation of this approach in a tool called 78

Lazifier, targeting the JavaScript programming language; 79

• An evaluation of Lazifier on 10 applications that suggests 80

that Lazifier reduces initial application size (36.2%, on 81

average) and load time significantly (29.7%, on average) 82

with little overhead associated with dynamic loading. 83

A code artifact including Lazifier and a reproduction of the 84

evaluation will be submitted for evaluation and made available 85

as an artifact should this paper be accepted. 86

The remainder of this paper is organized as follows. First, 87

the relevant background is covered in Section II, the problem is 88

further motivated in Section III, the approach is described in- 89

depth in Section IV (in which the implementation of our tool, 90

Lazifier, is overviewed in subsections IV-D), followed by the 91

evaluation in Section V, threats to validity in Section VI, and 92

finally related literature is overviewed in Section VII before 93

concluding in Section VIII. 94

II. BACKGROUND 95

This section reviews JavaScript’s mechanisms for asyn-96

chrony and importing modules.97

1

A. Asynchronous JavaScript98

JavaScript applications rely heavily on I/O operations, e.g.,99

interaction with servers and user input handling. JavaScript100

does not support concurrency at the language level, and101

instead relies on a run-time model based on an event loop102

that enables it to perform operations asynchronously despite103

being single-threaded. Essentially, the event loop is a queue104

of function calls (i.e., callbacks) to be executed, which follow105

run-to-completion semantics; calling functions asynchronously106

has the effect of loading them onto the event loop. Once107

on the event loop, a callback is executed similarly to any108

other synchronous code. There are three major ways to build109

asynchronous JavaScript applications, reviewed in turn.110

1) Event-Based Programming: This style of asynchronous111

programming relies on functions being registered as listener112

callbacks for specific events, which are called when the asso-113

ciated event is emitted. As an example, consider the following114

code snippet, which declares a function onClick that is then115

registered as a listener callback handling the "click" event:116

function onClick(event) { /* handler logic */ }117
document.addEventListener("click", onClick);118

The call document.addEventListener("click", onClick) registers119

onClick as the callback to handle the "click" event on the120

document component of the web page. Later, when a user clicks121

on the page, the "click" event fires and a call to onClick is122

placed on the event loop.123

2) Promises: ECMAScript 2016 introduced promises to the124

JavaScript language standard, which is a convenient abstrac-125

tion for asynchronous programming.126

a) Creating promises: Promises are created by invoking127

the Promise constructor, which takes as argument an executor128

function, itself taking 2 arguments:129

const p = new Promise((resolve, reject) => {130
if (someCondition)131

resolve(’success’);132
else133

reject(404);134
});135

Initially, the promise is in pending state while the asyn-136

chronous operation is in progress. This promise can transition137

to the settled state one of two ways: it is fulfilled by invok-138

ing the resolve function, or rejected by invoking the reject139

function as shown above.140

b) Promise-Based Control Flow: Callbacks can be141

registered as reactions on promises. For example, using the142

same promise p as above:143

p.then(v => {144
console.log(’Promise fulfilled with value: ’, v);145

}).catch(e => {146
console.log(’Error code: ’, e);147

});148

This code snippet first registers a reaction using the then149

method on p, which will be invoked if p is fulfilled; e.g.,150

if resolve(’success’) was called in the body of p, the value151

’success’ would be passed as an argument to the callback 152

registered with then. The catch method registers a reaction that 153

is invoked in the event that the promise was rejected; e.g., if 154

reject(404) was called in the body of p, the value 404 would 155

flow into the callback registered with catch. 156

c) Synchronizing Promises: As promises reflect asyn- 157

chronous computations, in general, there is no guarantee on 158

the order in which they will be settled. The promise library 159

provides the Promise.all method to synchronize a list of 160

promises: it accepts an array of promises and returns a single 161

promise that is resolved with the array of values corresponding 162

to the fulfilment of each promise, and the ith value corresponds 163

to the ith promise. If any promise in the input array is rejected, 164

Promise.all is rejected as well. For example, the following 165

code snippet shows Promise.all synchronizing the fulfilment 166

of three promises, and in the then reaction, v[0] corresponds 167

to the value p0 resolved with, v[1] with p1, and v[2] with p2. 168

Promise.all([p0, p1, p2]) 169
.then(v => { let total = v[0] + v[1] + v[2]; }) 170
.catch(e => { ... }); 171

3) Async/Await: ECMAScript 2017 expanded JavaScript by 172

introducing the async and await keywords to the language, 173

which provide syntactic sugar on top of promises. First and 174

foremost, await expressions are only allowed inside of async 175

functions. The expression await p halts execution within the 176

scope of an async function until the promise p is settled, at 177

which point await p will return the value that p was resolved 178

with. If p is rejected, await p will throw the value p was rejected 179

with, which can be handled in a try/catch. This greatly 180

simplifies asynchronous control flow, e.g., in the following 181

snippet, a promise p is await-ed; if p resolves, the value it 182

resolved with flows into the local variable v, and the function 183

returns v.toUpperCase(); if p was rejected, the value it was 184

rejected with would flow into e in catch(e), at which point the 185

error could be handled. 186

async function louder(p) { 187
try { 188

let v = await p; // => ’success’ 189
return v.toUpperCase(); 190

} catch (e) { 191
// ... 192

} 193
} 194

Importantly, a function that is declared as async always 195

returns a promise that resolves with the value the function 196

returns: if an async function f contains an expression return e, 197

where e is a value of type T , then f returns an object of type 198

PromisehT i that is resolved with the value e. To use the 199

return value, one can await calls to the function; for example, 200

consider this snippet using louder and p defined previously: 201

async function bar() { 202
const a = await louder(p); // => ’SUCCESS’ 203

} 204

Note: as of ECMAScript 2022, await expressions are also 205

allowed at the top level (i.e., outside a function body), although 206

it is a new language feature and is subject to unexpected 207

behavior: e.g., if the await-ed promise is rejected outside of 208

the context of a try/catch, the application crashes, and top- 209

level awaits in the context of circular dependencies can cause210

a deadlock [12].211

2

B. Importing Packages in JavaScript212

As this work is concerned with lazily loading packages, we213

overview JavaScript’s mechanisms for importing packages.214

a) require: The traditional method of including external215

code in JavaScript is to use require, a function that dy-216

namically and synchronously loads and executes the package217

matching the supplied name. Consider:218

const xlsx = require("xlsx");219
function importXLSXData(data) {220
const contents = xlsx.read(data, {...});221
// do stuff with the contents.222

}223

First, the "xlsx" package is imported at runtime and saved224

in the xlsx global variable. "xlsx" exports a read function to225

convert raw spreadsheet data, and so inside importXLSXData the226

exported function is referenced as a property on the xlsx object227

(xlsx.read). Notably, xlsx contains the entire package code.228

b) static import: ECMAScript 6 introduced the static229

import declaration as an alternative to the dynamic require.230

These import statements must be at the top level, all bindings231

must be identifiers, and the package name must be a string232

literal (this makes them easier to analyze statically); e.g.,233

the statement import * as xlsx from "xlsx" imports the entire234

"xlsx" package. A major advantage of static import statements235

is that a developer can specify which parts of a package they236

want to import; e.g., in the following snippet, the read function237

exported by "xlsx" is imported directly:238

import { read } from "xlsx";239
function importXLSXData(data) {240
const contents = read(data, {...});241
// do stuff with the contents.242

}243

The strict nature of these static import statements allows244

static analyzers to more effectively determine the extent to245

which an application exercises the code it imports, which can246

sometimes lead to smaller distributions—this is called tree-247

shaking [7], [8]. Unfortunately, JavaScript’s high degree of248

dynamism limits the power of these static analyses [13]–[15],249

preventing tree-shaking from removing much code.250

c) dynamic import: Static imports are syntactically251

rigid by design, and so ECMAScript 2020 introduced a252

dynamic, asynchronous import function. The import function253

accepts a string containing the name or path of a package as254

an argument and returns a promise. That promise can either255

resolve with an object containing all the exported functions256

and objects, or be rejected if the package cannot be found.257

This syntax is especially useful for importing large or rarely258

used external packages, since they will not be bundled with259

the rest of the application. This can often result in smaller260

initial application sizes and potentially faster load times. The261

following code snippet illustrates how to dynamically import262

"xlsx" only in the context of importXLSXData:263

async function importXLSXData() {264
const xlsx = await import("xlsx"); 265
const data = xlsx.read(...); 266

} 267

Note that if a dynamic import for a particular package is 268

encountered more than once, the package is loaded only once, 269

and all subsequent invocations resolve to the same cached 270

instance. Thus, even if import("xlsx") or importXLSXData is 271

invoked multiple times, the "xlsx" package will be loaded only 272

once and served to all subsequent invocations. 273

III. LAZY LOADING 274

To illustrate our approach, consider an open-source Java- 275

Script application that displays a list of recent movies to users, 276

complete with information about them (Movies-web-ui [16]). 277

Users can filter the list of movies and, optionally, export 278

their filtered selection. The code snippet in Fig 1(a) is taken 279

directly from Movies-web-ui, showing how they implement an 280

“export” button and associated functionality. Note that this ap- 281

plication uses a few external packages: React, an extremely 282

popular UI framework for JavaScript, file-saver [17] for 283

saving files, and xlsx [18] for dealing with spreadsheet- 284

like data. The file exports a function exportCSV that creates 285

a JSX 1 button component (lines 59-63). The "click" event 286

handler associated with this button (lines 60-61) eventually 287

calls the exportToCSV function (lines 49-57), which leverages 288

the xlsx package to convert a JSON file representing the 289

user’s selection to a sheet (line 52), and file-saver to 290

save the selection to a file (line 56). 291

Crucially, in this example, the xlsx and file-saver 292

packages are only needed to implement the export functional- 293

ity and are not useful to users that simply want to browse the 294

list of movies. It should also be noted that the references to 295

these packages on lines 52, 54, and 56 are the only references 296

to these packages in the entire application. 297

In such cases, it is desirable to load packages lazily, so that 298

users who do not use the associated functionality do not incur 299

the overhead of loading code that they will not use. The code 300

snippet in Fig 1(b) depicts how this can be achieved, and code 301

changes are highlighted. First, note the lack of static imports 302

to xlsx and file-saver, and the inclusion of dynamic 303

imports to the packages instead (lines 74-75). 304

The call import(’file-saver’) on line 74 creates a promise 305

that is resolved with an object representing the file-saver 306

package. Once the loading of the package has been com- 307

pleted, the await on the same line ensures that this ob- 308

ject can be assigned to the local variable fileSaver. Recall 309

that await expressions are only allowed in the context of 310

async functions, so the exportToCSV function must gain the 311

async keyword (line 73). This changes the return type of 312

exportToCSV to PromisehJSXi, so all call sites to this func- 313

tion should be await-ed to ensure that application behavior 314

remains unchanged. In particular, an await is added at the 315

call to exportToCSV on line 85. This new await requires the 316

surrounding function to be made async as well (line 84), at 317

which point we have reached a context that implicitly handles318

asynchrony: callbacks that serve as event handlers are not319

expected to return anything, so no further transformations are320

required once they are made async.321

1JSX is a type provided by React that closely matches HTML, allowing
programmers to easily construct HTML-like objects in their JavaScript code.

3

42 import React from ’react’;
43 import * as fileSaver from ’file-saver’;
44 import * as xlsx from ’xlsx’;
45
46 export const exportCSV = ({csvData, fileName}) => {
47 const fileType = ’...’;
48 const fileExtension = ’.xlsx’;
49 const exportToCSV = (csvData, fileName) => {
50
51
52 const ws = xlsx.utils.json_to_sheet(csvData);
53 const wb = {Sheets: {...}, SheetNames: [...]};
54 const buffer = xlsx.write(wb, {...});
55 const data = new Blob([buffer], {type: fileType});
56 fileSaver.saveAs(data, fileName + fileExtension);
57 }
58 return (
59 <button className="export"
60 onClick={(e) =>
61 exportToCSV(csvData,fileName)}>
62 Export
63 </button>
64)
65 }

66 import React from ’react’;
67 // this import was removed
68 // this import was removed
69
70 export const exportCSV = ({csvData, fileName}) => {
71 const fileType = ’...’;
72 const fileExtension = ’.xlsx’;
73 const exportToCSV = async (csvData, fileName) => {
74 const fileSaver = await import(’file-saver’);
75 const xlsx = await import(’xlsx’);
76 const ws = xlsx.utils.json_to_sheet(csvData);
77 const wb = {Sheets: {...}, SheetNames: [...]};
78 const buffer = xlsx.write(wb, {...});
79 const data = new Blob([buffer], {type: fileType});
80 fileSaver.saveAs(data, fileName + fileExtension);
81 }
82 return (
83 <button className="export"
84 onClick={async (e) =>
85 await exportToCSV(csvData,fileName)}>
86 Export
87 </button>
88)
89 }

(a) (b)
Fig. 1. Excerpt of a client-side application which uses xlsx: (a) version with static import (b) version with dynamic import

This simple refactoring reduces the amount of code that is322

loaded by over 30% (from 1.4mb to 0.96mb), and improves the323

initial load time of the application by just under 50% (from324

517ms to 286ms, averaged over 10 runs). If the user does325

want to export their selection, the packages are loaded rather326

quickly (0.11s), and the total amount of code loaded by the327

application is 1.4mb, i.e., the same as the original size.328

There are certain additional complexities that the above329

example only hinted at. For instance, when making a function330

async, all call sites to the function must be await-ed, no matter331

where they are. This can cause a cascade of transformations332

that may not be localized to a single file. Further, certain code333

patterns need to be modified to accommodate async functions334

(e.g., the expression someArray.forEach(f) is blocking if the335

callback f is synchronous, but non-blocking if f is async). In336

the next section, we describe these complexities and present337

our approach to automatically detecting packages that can be338

loaded lazily, and specify the code transformations required.339

IV. APPROACH340

Our approach for automatically refactoring applications to341

introduce lazy loading consists of the following three steps:342

1) Determine packages that are only used in the context of343

event handlers;344

2) Confirm which of these can be loaded lazily, and identify345

the code transformations required;346

3) Enact the transformation.347

For (1), we propose a fully automated static analysis to348

detect which packages are only used in the context of event349

handling code and that therefore are not initially needed by350

the application. For (2), another static analysis determines 351

all of the functions containing references to a given lazy 352

loading candidate. Each of those functions will require a 353

dynamic, asynchronous import of the package, which will 354

require several other code transformations to support the now 355

asynchronous import. If any of these transformations are not 356

possible, the lazy loading candidate is discarded. Finally, for 357

(3) we propose a set of declarative rewrite rules describing 358

the code changes required to refactor the application to lazily 359

load the package. Each of these phases is described in turn. 360

Soundness. We assume that the static analyses used in steps 361

1) and 2) are potentially unsound, because static analysis for 362

JavaScript that is simultaneously sound, precise, and scalable 363

is well beyond the state-of-the-art due to the dynamism inher- 364

ent to the language [13]–[15]. This means that the transforma- 365

tions proposed by the approach may not preserve behavior, and 366

should be carefully reviewed by a programmer, similar to the 367

approach taken by other refactoring tools for JavaScript [9]– 368

[11]. In Section V, we investigate the degree to which this 369

unsoundness causes behavioral differences. 370

A. Identify Candidate packages for Lazy Loading 371

To identify packages that should be loaded lazily, we pro- 372

vide a fully-automated analysis that detects packages that are 373

only used in the context of event-handling code. Given a call 374

graph for an application, this analysis identifies functions that 375

are supplied to event-handling mechanisms (e.g., registered 376

as “on-click” attributes of HTML elements, or registered as 377

event listeners), and determines all of the functions that are 378

(transitively) called from those handlers. If all references to a 379

package are in this list of functions, then it is flagged as being 380

a candidate for lazy loading. This list of event handlers is: 381

• functions passed to onClick or other on or click 382

events on JSX and HTML components, including func-383

tions identified using string representations of their name;384

• any code snippets included in an event handler attribute385

(e.g., code in the onClick event of an HTML element);386

4

• functions passed as callback arguments to event handlers387

(e.g., reader.on(’load’, callback));388

• functions assigned to properties of the window object that389

represents the Document Object Model (DOM).390

B. Validate and Determine Transformations Required391

To successfully load a package p lazily, all static imports392

to p must be removed, and functions containing references to393

p must be refactored to load the package dynamically. This394

involves removing static import ... from ’p’ statements and395

inserting dynamic import(’p’) expressions where appropriate.396

The expression import(’p’) yields a promise that eventually re-397

solves with the content of the package ’p’. While that promise398

is pending, the current context that depends on the package399

should not proceed, and await-ing that call will suspend400

execution until the promise is resolved. Then, if assigning the401

await-ed import to a variable (e.g., let x = await import(’p’)),402

the package itself will be stored in x and execution can resume.403

Now, await expressions are only allowed inside of functions404

marked as async, but making a function async changes its return405

type to PromisehT i, where T is the function’s original return406

type. To preserve existing application behavior, all call sites407

to this function will need to be await-ed, which itself requires408

more functions to be made async and more call sites to be409

await-ed, and so on. It is imperative that all call sites to newly410

async functions be await-ed, else program behavior will be411

affected; this means that the transformation is all or nothing412

proposition, and if any call sites cannot be await-ed, we must413

abandon the entire transformation, and discard p as a lazy414

loading candidate.415

Algorithm 1: Validating p and building Sasync

Data: p: a package being imported dynamically
Data: CG: the call graph of the program

1 let Sasync := {};
2 let F := [functions referencing p];
3 while F not empty do
4 let f := select and remove a function from F ;
5 if f not visited then
6 if f is a reaction or f is argument to promise

constructor or f registered as event handler
then

7 Sasync := Sasync [{f};
8 continue;

9 let Cf := callers of f in CG;
10 if f is constructor or c 2 Cf is top level or f

returns promise then
11 Sasync := {};
12 break;

13 Sasync := Sasync [{f};
14 F := F [Cf ;
15 mark f as visited;

16 return Sasync;

Algorithm 1 describes the process of creating the set Sasync416

of functions needing to be made async while validating the417

transformation. As inputs to the algorithm, the package p418

is supplied along with the call graph CG of the program.419

First, Sasync is initialized as the empty set (line 1), and the420

list F of functions yet to be processed is initialized with all421

functions containing references to the package p (line 2). The422

main loop (lines 3-15) iterates through functions f 2 F that423

have not yet been visited. First, lines 6-8 describes a special424

case where a function to be made asynchronous is already425

in a context that handles asynchrony, in which case no further426

transformations are required. Then, all callers of the function f427

are obtained from the call graph (line 9). Lines 10-12 validates428

the transformation by identifying situations that cannot support429

asynchrony. First, constructors cannot be async. Second, if f430

is called at the top level of the application, there is no sense in431

lazily loading p as the dynamic import would be executed on432

application startup anyway. (Also, top-level await expressions433

are only supported as of ECMAScript 2022.) Third, if f434

already returns a promise, the programmer is likely using it435

accordingly and may not want calls to it to be await-ed, and so436

it should not be transformed. In such cases, the transformation437

is rejected and p is not loaded lazily. If f passes this check, 438

then f is added to Sasync, all of f ’s callers are added to the 439

list F of functions left to process, and f is marked as visited; 440

analysis continues until F is exhausted. 441

C. Code Transformations 442

The application can be refactored to lazily load package p 443

once the set Sasync of functions that need to be made async is 444

known. Several transformations are required to handle the tran- 445

sition to asynchronous imports, specified as declarative rewrite 446

rules in Figure 2. The figure depicts simplified, idealized 447

JavaScript to illustrate the salient details of the transformation. 448

We will describe them one by one next. 449

ASYNC-FUNCTION: This transformation is simple: if a 450

function f is in the set Sasync of functions that need to be 451

made async, the function definition gains the async keyword. 452

ASYNC-CALL: All potential calls to a function f 2 Sasync 453

need to have await expressions inserted before the call. 454

FOREACH-FOROF: The expression arr.forEach(f) calls 455

the callback f on each element of arr, and importantly 456

returns nothing, i.e., forEach is type void. If f were made 457

asynchronous, the call to forEach would not wait for all of 458

the asynchronous calls to resolve, and execution would simply 459

continue past the call. In the event that f contains no return 460

statements, the body B of f is made into the body of a for ... 461

of loop that iterates over the elements of the array (the loop 462

iterator a is chosen to match the argument name of f). 463

FOREACH-MAP: In the event that f does contain a return 464

statement, conversion to a for ... of loop is not possible.465

Instead, the forEach is transformed into a map, and the call466

to map is surrounded in an await-ed Promise.all to ensure467

5

f 2 Sasync

fun f(A) {B} �! async fun f(A) {B}
(ASYNC-FUNCTION)

f 2 Sasync g can resolve to f

g(args) �! await g(args)
(ASYNC-CALL)

f 2 Sasync B body of f
no returns in B a = the single argument of f

arr.forEach(f) �! for([i, a] of arr.entries()) {B}
(FOREACH-FOROF)

f 2 Sasync B body of f
returns in B

arr.forEach(f) �! await Promise.all(arr.map(f))
(FOREACH-MAP)

f 2 Sasync

arr.map(f) �! await Promise.all(arr.map(f))
(AWAIT-MAP)

p 2 PD v0, ..., vn ref p 2 B
dynImp := const pname = await import(p)
declk := const vk = p.vname

k 8k 2 0, ..., n

fun f(A) {B} �! fun f(A) {dynImp; decl0; ... decln; B}
(INSERT-DYNAMIC-IMPORT)

x 2 Sasync fB := async ()) {B}
get x() {B} �! get x() {return fB();}

(GETTER)

Fig. 2. Transformation rules for introducing lazy loading and necessary code changes to support newly introduced asynchrony.

that all of the asynchronous callbacks fully execute before468

continuing.469

AWAIT-MAP: Similar to the previous rule, if a callback470

passed to map is to be made asynchronous, the map is471

surrounded in an await-ed Promise.all.472

INSERT-DYNAMIC-IMPORT: If a function f contains refer-473

ences (v0, ..., vn) to a package p that is to be made dynamic474

(p 2 PD), a dynamic import to the package p is created475

(const pname = await import(p)), where pname will serve476

as a reference to the package in this scope. Then, declarations477

are created for each vk 2 v0, ..., vn extracting the relevant478

component vname
k from the import pname. The dynamic import479

and associated declarations are then inserted at the beginning480

of the function body.481

GETTER: Getters present a special case as they cannot482

be made asynchronous. A new asynchronous function fB is483

created with the body B of the getter x. The body of x is then484

replaced with a return to the call to fB—callers of x will await485

calls to it, and so the promise returned by fB can be await-ed486

then.487

The code transformation in the motivating example was488

determined automatically using this approach, and involved489

applications of rules ASYNC-FUNCTION, ASYNC-CALL, and 490

INSERT-DYNAMIC-IMPORT. Fig. 3 shows small code ex- 491

amples depicting the transformations associated with the 492

other rules: Fig. 3(a) and (b) shows rule FOREACH-FOROF, 493

Fig. 3(c) and (d) shows rule FOREACH-MAP, Fig. 3(e) and (f) 494

shows rule AWAIT-MAP, and finally Fig. 3(g) and (h) shows 495

rule GETTER. 496

D. Implementation 497

This approach is implemented in a tool called Lazifier. All 498

static analyses are built in CodeQL [19], including data flow 499

analyses required to detect uses of imported packages and 500

call graph construction. All call graphs were obtained through 501

CodeQL’s own static call graph construction algorithm for 502

JavaScript [20], which is unsound. The code transformation is 503

built in JavaScript using Babel [21] to parse code, manipulate 504

ASTs, and emit transformed code. 505

V. EVALUATION 506

We pose the following research questions in order to eval- 507

uate the approach proposed in this paper: 508

RQ1) How does lazy loading affect the size and initial load 509

time of applications? 510

RQ2) How often does the transformation introduce unwanted 511

behavioral changes? 512

RQ3) How much code is loaded lazily, and how quickly is it 513

loaded? 514

RQ4) How many code changes are required to support lazy 515

loading?516

RQ5) What is the running time of Lazifier?517

6

90 arr.forEach((e) => {
91 if (e)
92 foo();
93 else
94 bar();
95 });

96 for([i, e] of arr.entries()) {
97 if (e)
98 await foo();
99 else

100 bar();
101 }

(a) (b)
102 arr.forEach((e) => {
103 if (e)
104 return foo();
105 else
106 return bar();
107 });

108 await Promise.all(arr.map(async (e) => {
109 if (e)
110 return await foo();
111 else
112 return await bar();
113 }));

(c) (d)
114 arr.map((e) => {
115 if (e)
116 foo();
117 else
118 bar();
119 });

120 await Promise.all(arr.map(async (e) => {
121 if (e)
122 await foo();
123 else
124 await bar();
125 }));

(e) (f)

126 const o = {
127 x : 1,
128 get y() {
129 return foo(x);
130 }
131 }
132
133 o.y;

134 const o = {
135 x : 1,
136 get y() {
137 return (async () => {
138 return await foo(x);
139 })();
140 }
141 }
142
143 await o.y;

(g) (h)
Fig. 3. Code showing the before and after of applying select rewrite rules: (a)-(b) shows FOREACH-FOROF, (c)-(d) shows FOREACH-MAP, (e)-(f) shows
AWAIT-MAP, and (g)-(h) shows GETTER.

Experimental Methodology518

To answer these research questions, we first compiled519

a list of 10,000 open-source client-side JavaScript applica-520

tions by scraping GitHub for repositories that had JavaScript521

UI frameworks stated as dependencies. Then, we ran the522

npm-filter [31] tool to identify projects for which Lazifier523

identified at least one package as a candidate for lazy load-524

ing (yielding 998 projects). We manually inspected projects525

in this list until we found 10 that could be successfully526

installed, started, and interacted with. The vast majority of527

JavaScript projects on GitHub suffer from installation errors528

(e.g., developer-specified dependencies no longer work), build529

errors (e.g., build configurations that are only valid for certain530

operating systems/environments), or environment errors (e.g.,531

many client-side applications rely on external servers that532

are inaccessible). Since we wanted to have a high degree of533

confidence in our understanding of our subject applications, we534

expended considerable effort finding applications that suffered535

from none of these aforementioned issues.536

To answer RQ1, we first determine the original application’s537

initial size using the “bytes transferred” metric from Chrome538

DevTools’ [32] “Network” tab on a hard refresh of the appli-539

cation page, and then apply the transformation and similarly 540

determine the initial size of the transformed application. To 541

time the initial application load, we again leverage the Chrome 542

DevTools’ “Network” tab, and note the “Load” time field upon 543

performing a hard refresh—we note this time pre- and post- 544

transformation, and collect and average 10 load times. 545

To answer RQ2, we manually interacted with each ap- 546

plication to determine how to make it execute code from 547

packages that were flagged to be loaded lazily, then applied the 548

transformation and repeated the interaction, manually ensuring 549

that the application behavior was unchanged. 550

To answer RQ3, we identify how to trigger each of the 551

dynamic imports (in the same manner as in RQ2), and note 552

the size of the code chunk transferred when doing so through 553

the Chrome DevTools’ “Network” tab (again consulting the 554

“bytes transferred” metric), and note the time taken to transfer 555

that chunk through the “Load” time field. 556

To answer RQ4, we configured Lazifier to: display which 557

packages were flagged to be loaded lazily, display the dynamic 558

import statements that were added to the program, and log the 559

code transformations it was applying. 560

And finally, to answer RQ5, we used the Unix time utility 561

to time the execution of Lazifier on each application. To run 562

Lazifier’s analyses, a CodeQL database must be built for the 563

project, and so we used the time utility to time the CodeQL 564

database build for each project.565

All measurements were taken on a 2016 MacBook Pro566

running Catalina 10.15.7, with a 2.6GHz Quad-Code Intel567

7

TABLE I
INFORMATION ABOUT SUBJECT APPLICATIONS. THE FIRST ROW READS: the first application is called upoint-query-builder from Harinathlee, and commit
hash f9aa0f1 was used for the evaluation; upoint-query-builder has 10,341 lines of code. The initial size of the application is 0.84mb, reduced to 0.61mb
after loading modules lazily, corresponding to a 27.4% size reduction. The size of the application once modules are loaded dynamically is 0.84mb. It took

201s to run Lazifier on this project, which required an additional 28s to build the CodeQL database.

Commit Initial Size (mb) Size Expanded Tool Run QLDB
Project Name Hash LOC Before After Reduction Size (mb) Time (s) Time (s)
Harinathlee/upoint-query-builder [22] f9aa0f1 10,341 0.84 0.61 27.4% 0.84 201 28
sadupawan1990/excelreader [23] 4a5f9cb 9,733 4.8 3.4 29.2% 4.8 187 44
fahimahammed/task [24] b641bc0 9,747 0.94 0.48 48.9% 0.94 180 36
hongtaodai/react-excel [25] 2d59e85 9,685 1.9 1.5 21.1% 1.9 178 33
Abhishek312s/Movies-web-ui [16] 58904a3 9,789 1.4 0.96 31.4% 1.4 180 35
vishumane/ExcelSheet Validation Reactjs [26] f38cb9e 9,942 0.90 0.40 55.6% 0.90 181 35
thewca/scrambles-matcher [27] 1de93f7 11,304 1.1 0.83 24.5% 1.1 188 37
hoverGecko/timetable [28] 0fa8527 9,932 0.60 0.38 36.7% 0.60 314 80
Akalay27/workday-schedule-exporter [29] 97ca596 9,718 0.90 0.44 51.1% 0.90 186 35
ultimateakash/react-excel-csv [30] 18c6d97 9,779 0.85 0.62 27.1% 0.85 206 34

Average Size Reduction: 36.2% Average Run Time: 240

Code i7 processor and 16GB RAM. We used Google Chrome568

version 112.0.5615.137 (Official Build) (x86 64) in incognito569

mode. Next, we respond to each of the RQs in turn.570

RQ1: How does lazy loading affect the size and initial load571

time of applications?572

Lazifier’s transformation leverages ECMAScript 2020’s573

ability to load packages on demand: If all static imports to574

a package are replaced with dynamic imports, the JavaScript575

runtime dynamically fetches the package when a dynamic576

import is executed, and the package is not included in the577

application at start time. The initial application size is reported578

in columns Initial Size (mb) Before and After in Table I,579

corresponding to the size of the applications pre- and post-580

refactoring. We note significant size reduction across all ap-581

plications (36.2% on average), as high as 51.6%.582

While smaller applications are desirable in and of them-583

selves, we investigate the degree to which this size reduction584

hastens the initial load time of refactored applications. Av-585

erages of 10 load times are reported in Fig. 4, with three586

columns for each subject application, the first two of which587

are relevant here: the first column corresponds to the load time588

pre-refactoring, and the middle column to the load time post-589

refactoring. We find statistically significant (T-test, two-tailed,590

95% confidence) reductions in initial load time in all cases,591

with an average speedup of 29.7%, as high as 47.5%.592

The size of refactored applications is smaller in all cases,
which translates to a statistically significant reduction in
application start times.

593

RQ2: How often does the transformation introduce unwanted594

behavioral changes?595

Since the approach presented in this paper relies on unsound596

static analysis, the transformations suggested by Lazifier are597

not guaranteed to preserve application behavior. In our subject598

applications, Lazifier’s refactorings caused 15 packages to 599

be loaded lazily, introducing 21 dynamic imports to those 600

packages, requiring 47 other transformations (i.e., applications 601

of a rewrite rule). We manually interacted with the applications 602

and ensured that all transformed code was exercised, and found 603

no behavioral differences introduced by the transformation. 604

For the 10 subject applications under consideration in this
evaluation, there was no evidence of behavioral differences
due to unsoundness in the static analysis.

605

RQ3: How much code is loaded lazily, and how quickly is it 606

loaded? 607

When a package is loaded dynamically, the application 608

asynchronously fetches package code and executes it, making 609

the package available. Dynamically loading packages may 610

result in a larger total application size, since dynamic imports 611

load the entire package code (so no tree-shaking can be done 612

as in the case of static imports). The total expanded size 613

of each application is reported in column Expanded Size 614

(mb) in Table I. Interestingly, we note that the total size of 615

applications after dynamic loading is always the same as the 616

initial size without refactoring, suggesting that tree-shaking is 617

not an effective technique at reducing the size of imported 618

packages. 619

We also noted the time taken to perform this transfer, 620

reported in Fig. 4, specifically the third column (“dynamic”) 621

in each set of three. The transfer is small relative to initial load 622

times in all cases (85.8ms on average), though note that we 623

do not simulate latency in this test, and assuredly transferring 624

data over a network would incur overhead related to latency. 625

The total size of the code loaded by the refactored applications
(including lazily loaded packages) is comparable to the total
size of the original applications, and dynamically loading
packages is generally not noticeable.

626

RQ4: How many code changes are required to support lazy 627

loading?628

Since Lazifier suggests code changes that should be vetted629

carefully by programmers, it would be helpful if the extent630

8

0

300

600

900

tas

k

 ti

met
abl

e

 e
xce

lre
ade

r

 r
eac

t−e
xce

l

Mov
ies

−we
b−u

i

 re

act
−ex

cel
−cs

v

 s
cra

mbl
es−

mat
che

r

 u

poi
nt−

que
ry−

bui
lde

r

 Ex

cel
She

et_
Val

ida
tio

n

wor
kda

y−s
che

dul
e−e

xpo
rte

r

Subject application

Av
er

ag
e

(m
s)

State
before

after

dynamic

Application load time (avg. over 10 runs)

Fig. 4. Load times for each subject application are depicted in this plot, with a set of three columns for each application. In each set, three times are presented:
first, the time taken pre-refactoring (before), then after refactoring (after), and finally the time taken to dynamically load all packages (dynamic). These are
averages over 10 runs, and error bars indicate +/- one standard deviation.

of the transformations required was small and manageable.631

Table II lists information about the code transformations632

suggested by Lazifier in each subject application, namely how633

many packages could be loaded lazily (column # Imps. Re-634

moved), how many dynamic import statements were required635

to lazily load the packages (column # Dyn. Imps.), and finally636

how many applications of other rewrite rules were necessary637

to support lazily loading the packages (column # Trans.638

Changes). All cases required few code transformations, at639

most 15 for upoint-query-builder (the number of changes640

including added dynamic imports), with a median of 6 changes641

(again including added dynamic imports) per application,642

which should be manageable for a developer to review.643

The number of code changes suggested by Lazifier is small,
so the effort needed by programmers to review these changes
is manageable.

644

RQ5: What is the running time of Lazifier?645

The time taken to run Lazifier is reported in column Tool646

Run Time (s) of Table I. This includes the time to run the647

static analyses and also transform the application, though the648

transformation itself runs extremely quickly. The time to build649

the CodeQL database is reported in column QLDB Time (s)650

in Table I: this is a fixed cost once per project, and can be651

reused by other CodeQL queries. 652

The run time of Lazifier is 240s on average, demonstrating its
suitability for practical use.

653

TABLE II
INFORMATION ABOUT CODE TRANSFORMATIONS. THE FIRST ROW READS:

in upoint-query-builder, 2 packages were loaded dynamically instead of
statically; 3 dynamic import statements were added, and 12 applications of

other rewrite rules were required to support the transition.

Imps. # Dyn. # Trans.
Project Name Removed Imps. Changes
upoint-query-builder 2 3 12
excelreader 1 1 2
task 1 1 2
react-excel 1 1 2
Movies-web-ui 2 2 5
ExcelSheet Validation Reactjs 2 3 7
scrambles-matcher 1 2 4
timetable 1 2 4
workday-schedule-exporter 3 4 6
react-excel-csv 1 2 3
In total: 15 21 47

VI. THREATS TO VALIDITY 654

The technique presented in this paper was inspired by the 655

work of Gokhale et al. [11], and suffers similar threats to 656

validity. Namely, the code transformations proposed by our 657

approach are unsound and are not guaranteed to preserve 658

program behavior. There are many reasons for losses of sound- 659

ness, e.g., the static analyses that build call graphs are unsound, 660

and our technique introduces asynchrony to applications which 661

may cause data races. In a sense, this unsoundness is inevitable662

as JavaScript is a highly dynamic language not amenable to663

sound static analysis. Nevertheless, in our evaluation we found664

that Lazifier proposed no behavior-altering transformations in665

spite of this unsoundness.666

9

Beyond this, it is possible that our set of subject applications667

may not be representative. To mitigate this, we selected our668

subject applications from a list of client-side JavaScript ap-669

plications sampled essentially randomly from GitHub. We did670

prune this list such that we could build and run the applications671

to evaluate the effectiveness of our technique, but believe that672

our random initial selection of projects mitigates risk of bias.673

VII. RELATED WORK674

Broadly, this work is concerned with refactoring web ap-675

plication source code to lazy load libraries that are only676

conditionally required. Software debloating is a related area677

of research focused on trimming unused functionality from678

applications and has many applications in security, particularly679

when unused code is removed from applications. Also, the680

refactoring proposed in this work introduces asynchrony to an681

application, which is another well-studied area of research.682

Debloating and Lazy Loading: Software debloating is683

well-studied. Many applications contain far more code than684

is required, commonly referred to as “dead code”, and the685

study of debloating is the study of how to determine and686

safely remove this dead code. Besides increasing application687

size, dead code is undesirable as it increases the “attack688

surface” of an application, i.e., more code provides more689

opportunities for an attacker to take advantage of a system.690

For example, Bhattacharya et al. [33] studies situations where691

functions accumulate more features than are strictly neces-692

sary, yielding poor performance when spurious functional-693

ity is not needed. Koo et al. [34] propose configuration-694

driven software debloating, where application configurations695

are linked with feature-specific libraries, and libraries are only696

loaded when the appropriate configuration criteria are met.697

This is a semi-automated process, and the code itself is not698

changed. Doloto [35] proposes an approach that leverages699

developer-supplied application traces to automatically refactor700

applications to load entire “routes” lazily, only when they701

are needed; their approach performs dynamic loading syn-702

chronously, which is disallowed in the modern web standard.703

Soto et al. [36] propose an approach to automatically spe-704

cialize Java dependencies according to how they are used by705

the application’s test suite, and Sharif et al. [37] propose a706

technique that leverages constant value configuration data to707

specialize applications.708

Some recent work has been concerned with debloating709

JavaScript applications. Stubbifier [38], for example, leverages710

an application’s test suite to determine “probably unused” code711

and replace this code with small stubs that can dynamically712

fetch and execute the code if it was actually needed. Stubbifier713

cannot debloat client-side applications (which, incidentally,714

rarely have test suites). Malavolta et al. [39] propose a715

technique to debloat client-side JavaScript applications with716

various levels of optimization; first, dead code is determined 717

by consulting a call graph of the application, and one of 718

the optimization levels proposed in the work replaces dead 719

code with snippets to load the code lazily. Vasquez et al. [40] 720

propose a technique that flags external library functions as 721

being potentially dead, and removes them once a programmer 722

confirms that they are truly unused. These pieces of work 723

are concerned with removing unused functionality, and often 724

lazily loading the dead code if they were wrong about the code 725

being dead, whereas our approach removes conditionally used 726

functionality, and none of these tools would not remove the 727

packages identified by our approach as they are used in the 728

application. In a sense, these approaches are complementary. 729

Refactoring to Introduce Asynchrony: Loading packages 730

lazily must be done asynchronously on the web, as blocking 731

I/O operations are prohibited in the modern web standard. 732

Thus, the refactoring proposed in this paper also refactor 733

the applications to be asynchronous w.r.t. the lazily loaded 734

packages. There are numerous pieces of related work in this 735

area. Most closely related is Desynchronizer [11], which refac- 736

tors JavaScript applications to use asynchronous APIs where 737

synchronous APIs were once used. Other research loosely in 738

this space includes work by Khatchadourian et al [41] on 739

automatically parallelizing Java 8 streams, by Dig et al. [42] 740

to parallelize Java loops, by Wloka et al. [43] on refactoring 741

applications to be reentrant, by Dig et al. [44] for leveraging 742

concurrency APIs to transform sequential code. Essentially, 743

making synchronous code asynchronous is a difficult problem; 744

in our work, we introduce just enough asynchronous constructs 745

to allow for packages to be lazily loaded. 746

There is also a related wide body of work on understanding 747

asynchronous applications, e.g., work by Alimadadi et al. [45] 748

on understanding event-based asynchrony in JavaScript appli- 749

cations, on understanding asynchrony on the entire application 750

stack [46], and on understanding the effects of DOM-sensitive 751

changes [47]. This is complementary to our work, as Lazifier 752

presents refactorings (that introduce asynchrony!) as sugges- 753

tions to be vetted by programmers. 754

VIII. CONCLUSION 755

Client-side developers want to minimize the amount of time 756

users need to wait for a web application to load and become 757

responsive. Existing tools such as bundlers, minifiers, and 758

tree-shakers focus on eliminating unused functionality and 759

reducing code size, but do not address scenarios where an 760

application contains functionality that is (potentially) required, 761

but not immediately when the application starts up. In such 762

cases, responsiveness can be improved by loading such func- 763

tionality lazily. We have presented an approach for detecting 764

situations where an entire library can be loaded lazily. The 765

approach uses static analysis to identify packages that are 766

only used in the context of event handling and to compute 767

the changes that must be made to the code to accommodate 768

lazy loading. A set of declarative rewrite rules specifies the 769

code changes required to transform the application. 770

This approach was implemented in a tool called Lazifier, 771

and evaluated on 10 open-source client-side JavaScript ap-772

plications. In all cases, Lazifier successfully refactored the773

applications, resulting in an average initial application size774

reduction of 36.2%, which caused applications to start up775

29.7% more quickly on average.776

10

REFERENCES777

[1] D. F. Galletta, R. M. Henry, S. McCoy, and P. Polak, “Web site delays:778

How tolerant are users?,” J. Assoc. Inf. Syst., vol. 5, no. 1, p. 1, 2004.779

[2] G. Lindgaard, G. Fernandes, C. Dudek, and J. M. Brown, “Attention web780

designers: You have 50 milliseconds to make a good first impression!,”781

Behav. Inf. Technol., vol. 25, no. 2, pp. 115–126, 2006.782

[3] Z. Liu and J. Heer, “The effects of interactive latency on exploratory783

visual analysis,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12,784

pp. 2122–2131, 2014.785

[4] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,786

“Klotski: Reprioritizing web content to improve user experience on787

mobile devices,” in 12th USENIX Symposium on Networked Systems788

Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6,789

2015, pp. 439–453, USENIX Association, 2015.790

[5] D. Crockford, “jsmin,” 2023. See https://www.crockford.com/jsmin.791

html.792

[6] mishoo, “uglify-js,” 2023. See https://www.npmjs.com/package/793

uglify-js.794

[7] Rollup, “Tree shaking,” 2023. See https://rollupjs.org. also see https:795

//rollupjs.org/faqs/#what-is-tree-shaking for tree-shaking.796

[8] webpack, “Tree shaking,” 2023. See https://webpack.js.org. Also, see797

https://webpack.js.org/guides/tree-shaking/#root for tree shaking.798

[9] E. Arteca, F. Tip, and M. Schaefer, “Enabling additional parallelism799

in asynchronous javascript applications,” 35th European Conference on800

Object-Oriented Programming (ECOOP 2021).801

[10] A. Turcotte, M. W. Aldrich, and F. Tip, “Reformulator: Automated802

refactoring of the n+1 problem in database-backed applications,” in Pro-803

ceedings of the 37th IEEE/ACM International Conference on Automated804

Software Engineering, ASE ’22, (New York, NY, USA), Association for805

Computing Machinery, 2023.806

[11] S. Gokhale, A. Turcotte, and F. Tip, “Automatic migration from syn-807

chronous to asynchronous JavaScript APIs,” Proc. ACM Program. Lang.,808

vol. 5, no. OOPSLA, pp. 1–27, 2021.809

[12] ECMAScript, “Proposal for top level awaits,” 2023. See https://github.810

com/tc39/proposal-top-level-await.811

[13] J. Park, I. Lim, and S. Ryu, “Battles with false positives in static812

analysis of javascript web applications in the wild,” in Proceedings of813

the 38th International Conference on Software Engineering, ICSE 2016,814

Austin, TX, USA, May 14-22, 2016 - Companion Volume (L. K. Dillon,815

W. Visser, and L. A. Williams, eds.), pp. 61–70, ACM, 2016.816

[14] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun, J. H. Shin, and817

K. Kim, “DAPP: automatic detection and analysis of prototype pollution818

vulnerability in node.js modules,” Int. J. Inf. Sec., vol. 21, no. 1, pp. 1–819

23, 2022.820

[15] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node.js prototype821

pollution vulnerabilities via object lookup analysis,” in ESEC/FSE822

’21: 29th ACM Joint European Software Engineering Conference and823

Symposium on the Foundations of Software Engineering, Athens, Greece,824

August 23-28, 2021 (D. Spinellis, G. Gousios, M. Chechik, and M. D.825

Penta, eds.), pp. 268–279, ACM, 2021.826

[16] Abhishek312s, “Movies-web-ui,” 2023. See https://github.com/827

Abhishek312s/Movies-web-ui/58904a3.828

[17] eligrey, “file-saver,” 2023. See https://www.npmjs.com/package/829

file-saver.830

[18] SheetJS, “xlsx,” 2023. See https://www.npmjs.com/package/xlsx.831

[19] Microsoft, “CodeQL,” 2023. See https://codeql.github.com/.832

[20] Microsoft, “CodeQL JavaScript data flow library,” 2023. See833

https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/834

javascript/dataflow.835

[21] Babel, “Babel,” 2023. See https://babeljs.io/.836

[22] Harinathlee, “upoint-query-builder,” 2023. See https://github.com/837

Harinathlee/upoint-query-builder/f9aa0f1.838

[23] sadupawan1990, “excelreader,” 2023. See https://github.com/839

sadupawan1990/excelreader/4a5f9cb.840

[24] fahimahammed, “task,” 2023. See https://github.com/fahimahammed/841

task/b641bc0. 842

[25] hongtaodai, “react-excel,” 2023. See https://github.com/hongtaodai/ 843

react-excel/2d59e85. 844

[26] vishumane, “Excelsheet validation reactjs,” 2023. See https://github. 845

com/vishumane/ExcelSheet Validation Reactjs/f38cb9e. 846

[27] thewca, “scrambles-matcher,” 2023. See https://github.com/thewca/ 847

scrambles-matcher/1de93f7. 848

[28] hoverGecko, “timetable,” 2023. See https://github.com/hoverGecko/ 849

timetable/0fa8527. 850

[29] Akalay27, “workday-schedule-exporter,” 2023. See https://github.com/ 851

Akalay27/workday-schedule-exporter/97ca596. 852

[30] ultimateakash, “react-excel-csv,” 2023. See https://github.com/ 853

ultimateakash/react-excel-csv/18c6d97. 854

[31] E. Arteca and A. Turcotte, “Npm-filter: Automating the mining of 855

dynamic information from npm packages,” in Proceedings of the 19th 856

International Conference on Mining Software Repositories, MSR ’22, 857

(New York, NY, USA), p. 304–308, Association for Computing Ma- 858

chinery, 2022. 859

[32] Google, “Chrome DevTools,” 2023. See https://developer.chrome.com/ 860

docs/devtools/. 861

[33] S. Bhattacharya, K. Gopinath, and M. G. Nanda, “Combining concern 862

input with program analysis for bloat detection,” ACM SIGPLAN No- 863

tices, vol. 48, no. 10, pp. 745–764, 2013. 864

[34] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven 865

software debloating,” in Proceedings of the 12th European Workshop 866

on Systems Security, pp. 1–6, 2019. 867

[35] B. Livshits and E. Kiciman, “Doloto: Code splitting for network-bound 868

web 2.0 applications,” in Proceedings of the 16th ACM SIGSOFT 869

International Symposium on Foundations of Software Engineering, SIG- 870

SOFT ’08/FSE-16, (New York, NY, USA), p. 350–360, Association for 871

Computing Machinery, 2008. 872

[36] C. Soto-Valero, D. Tiwari, T. Toady, and B. Baudry, “Auto- 873

matic specialization of third-party java dependencies,” arXiv preprint 874

arXiv:2302.08370, 2023. 875

[37] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: Appli- 876

cation specialization for code debloating,” in Proceedings of the 33rd 877

ACM/IEEE International Conference on Automated Software Engineer- 878

ing, ASE ’18, (New York, NY, USA), p. 329–339, Association for 879

Computing Machinery, 2018. 880

[38] A. Turcotte, E. Arteca, A. Mishra, S. Alimadadi, and F. Tip, “Stubbi- 881

fier: debloating dynamic server-side javascript applications,” Empirical 882

Software Engineering, vol. 27, no. 7, p. 161, 2022. 883

[39] I. Malavolta, K. Nirghin, G. L. Scoccia, S. Romano, S. Lombardi, 884

G. Scanniello, and P. Lago, “Javascript dead code identification, elim- 885

ination, and empirical assessment,” IEEE Transactions on Software 886

Engineering, pp. 1–23, 2023. 887

[40] H. Vázquez, A. Bergel, S. Vidal, J. Dı́az Pace, and C. Marcos, “Slim- 888

ming javascript applications: An approach for removing unused func- 889

tions from javascript libraries,” Information and Software Technology, 890

vol. 107, pp. 18–29, 2019. 891

[41] R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, “Safe 892

automated refactoring for intelligent parallelization of Java 8 streams,” 893

in Proceedings of the 41st International Conference on Software Engi- 894

neering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019 (J. M. 895

Atlee, T. Bultan, and J. Whittle, eds.), pp. 619–630, IEEE / ACM, 2019. 896

[42] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. E. Johnson, “Relooper: 897

refactoring for loop parallelism in Java,” in Companion to the 24th 898

Annual ACM SIGPLAN Conference on Object-Oriented Programming, 899

Systems, Languages, and Applications, OOPSLA 2009, October 25-29, 900

2009, Orlando, Florida, USA, pp. 793–794, 2009. 901

[43] J. Wloka, M. Sridharan, and F. Tip, “Refactoring for reentrancy,” 902

in Proceedings of the 7th joint meeting of the European Software 903

Engineering Conference and the ACM SIGSOFT International Sympo- 904

sium on Foundations of Software Engineering, 2009, Amsterdam, The 905

Netherlands, August 24-28, 2009, pp. 173–182, 2009. 906

[44] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java 907

code for concurrency via concurrent libraries,” in 31st International 908

Conference on Software Engineering, ICSE 2009, May 16-24, 2009, 909

Vancouver, Canada, Proceedings, pp. 397–407, 2009. 910

[45] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under- 911

standing javascript event-based interactions,” in Proceedings of the 36th 912

International Conference on Software Engineering, pp. 367–377, 2014. 913

[46] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding asyn- 914

chronous interactions in full-stack javascript,” in Proceedings of the915

38th International Conference on Software Engineering, pp. 1169–1180,916

2016.917

[47] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid dom-sensitive918

change impact analysis for javascript,” in 29th European Conference919

on Object-Oriented Programming (ECOOP 2015), Schloss Dagstuhl-920

Leibniz-Zentrum fuer Informatik, 2015.921

11

https://www.crockford.com/jsmin.html
https://www.crockford.com/jsmin.html
https://www.crockford.com/jsmin.html
https://www.npmjs.com/package/uglify-js
https://www.npmjs.com/package/uglify-js
https://www.npmjs.com/package/uglify-js
https://rollupjs.org
https://rollupjs.org/faqs/#what-is-tree-shaking
https://rollupjs.org/faqs/#what-is-tree-shaking
https://rollupjs.org/faqs/#what-is-tree-shaking
https://webpack.js.org
https://webpack.js.org/guides/tree-shaking/#root
https://github.com/tc39/proposal-top-level-await
https://github.com/tc39/proposal-top-level-await
https://github.com/tc39/proposal-top-level-await
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/xlsx
https://codeql.github.com/
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://babeljs.io/
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/fahimahammed/task/b641bc0
https://github.com/fahimahammed/task/b641bc0
https://github.com/fahimahammed/task/b641bc0
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/

	Introduction
	Background
	Asynchronous JavaScript
	Event-Based Programming
	Promises
	Async/Await

	Importing Packages in JavaScript

	Lazy Loading
	Approach
	Identify Candidate packages for Lazy Loading
	Validate and Determine Transformations Required
	Code Transformations
	Implementation

	Evaluation
	Threats to Validity
	Related Work
	Conclusion
	References

