
Code Coverage Criteria for Asynchronous Programs
Mohammad Ganji

Simon Fraser University
Canada

m_ganji@sfu.ca

Saba Alimadadi
Simon Fraser University

Canada
saba@sfu.ca

Frank Tip
Northeastern University

USA
f.tip@northeastern.edu

ABSTRACT
Asynchronous software often exhibits complex and error-prone
behaviors that should be tested thoroughly. Code coverage has been
the most popular metric to assess test suite quality. However, tradi-
tional code coverage criteria do not adequately re�ect completion,
interactions, and error handling of asynchronous operations.

This paper proposes novel test adequacy criteria for measur-
ing: (i) completion of asynchronous operations in terms of both
successful and exceptional execution, (ii) registration of reactions
for handling both possible outcomes, and (iii) execution of said
reactions through tests. We implement JS����, a tool for automati-
cally measuring coverage according to these criteria in JavaScript
applications, as an interactive plug-in for Visual Studio Code.

An evaluation of JS���� on 20 JavaScript applications shows that
the proposed criteria can help improve assessment of test adequacy,
complementing traditional criteria. According to our investigation
of 15 real GitHub issues concerned with asynchrony, the new crite-
ria can help reveal faulty asynchronous behaviors that are untested
yet are deemed covered by traditional coverage criteria. We also
report on a controlled experiment with 12 participants to investi-
gate the usefulness of JS���� in realistic settings, demonstrating
its e�ectiveness in improving programmers’ ability to assess test
adequacy and detect untested behavior of asynchronous code.

CCS CONCEPTS
• Software and its engineering! Software testing and debug-
ging.

KEYWORDS
Code coverage, Dynamic analysis, Asynchronous JavaScript

ACM Reference Format:
Mohammad Ganji, Saba Alimadadi, and Frank Tip. 2023. Code Coverage
Criteria for Asynchronous Programs . In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San
Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3611643.3616292

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616292

1 INTRODUCTION
Asynchronous programming is extensively used for web develop-
ment and is crucial for providing bene�ts such as non-blocking I/O,
seamless and real-time user interactions, and e�cient client-server
communications. JavaScript is single-threaded, and asynchronous
execution of potentially long-running tasks is what enables the ap-
plications to remain responsive while processing events. In recent
years, JavaScript’s Promises [1, Section 27.2] and async/await [1, Sec-
tion 15.6] have rapidly become the most popular mechanisms for
supporting asynchrony, supplanting the previous error-prone ap-
proach based on event-based programming and callbacks. However,
understanding the �ow of asynchronous execution and identifying
and �xing faults remain challenging for developers [15, 47, 72, 77].

Developers typically rely on an application’s tests to identify
faults and verify the application’s behavior. They often use code
coverage criteria such as statement and branch coverage to assess
the adequacy of their tests throughout the process, and to identify
and address the shortcomings of existing tests in order to improve
their quality [40, 81]. However, traditional coverage criteria are
unable to examine various scenarios of exercising asynchronous
code in terms of eventual completion of asynchronous operations,
their interactions, and their error handling. Despite the importance
of testing asynchronous programs and the severity of the issues
that occur in such programs, there are currently no code coverage
criteria that target the adequacy of tests with regard to exploring
scenarios that occur in asynchronous code.

This paper presents new coverage criteria for assessing the ade-
quacy of tests in exercising the asynchronous behavior of JavaScript
applications. These criteria quantify the adequacy of tests in cover-
ing eventual successful or exceptional completion of asynchronous
operations, associating reactions with the outcomes of asynchro-
nous operations, and execution of (chains of) reactions by the ap-
plication’s tests. These criteria target the semantics of JavaScript’s
promises and async/await features, and are meant to complement
existing coverage metrics such as statement and branch coverage.

We implement our approach in a plugin for Visual Studio Code
named JS����, which presents coverage results as a textual report,
and through an interactive visualization. JS���� automatically in-
struments an application’s code to calculate and report coverage
according to three criteria, namely settlement coverage, reaction
registration coverage, and reaction execution coverage.

An evaluation of JS���� on 20 JavaScript applications shows that
the proposed criteria can help improve assessment of test adequacy,
complementing traditional criteria. Furthermore, an investigation
of 15 real GitHub issues concerned with asynchrony demonstrates
that the new criteria can help reveal faulty asynchronous behaviors
that are untested yet are deemed covered by traditional coverage
criteria. We also report on a controlled experiment with 12 partici-
pants to investigate the usefulness of JS���� in realistic settings,

https://doi.org/10.1145/3611643.3616292
https://doi.org/10.1145/3611643.3616292
https://doi.org/10.1145/3611643.3616292

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

demonstrating that it is e�ective in improving programmers’ ability
to assess test adequacy and detect untested and buggy behavior.

In summary, this paper makes the following contributions:
• New coverage criteria that quantify the degree to which key
scenarios are exercised in asynchronous code,

• An instrumentation-based technique for measuring coverage
according to these criteria,

• Implementation of the technique in an interactive VS Code
extension named JS���� that computes a coverage report
and provides an interactive visualization [42], and

• An empirical evaluation, demonstrating the ability of the pro-
posed criteria to identify test inadequacies in asynchronous
code. We also report on a user study showing that JS����
improves the e�ectiveness of programmers when testing and
debugging asynchronous code.

2 BACKGROUND
In recent years, many programming languages have been extended
with support for asynchrony. For example, Java and Dart now sup-
port Futures [5, 6], C# and Python support async/await [2, 3], and
JavaScript �rst added promises, and then de�ned an async/await
feature in terms of promises. These new features in JavaScript are
used pervasively and pose signi�cant new challenges for testing.

In this section, we provide an overview of promises and async
/await, two features that have supplanted event-driven asynchro-
nous programming in JavaScript. While our techniques do not apply
directly to the latter, any event-driven API can be “promisi�ed” into
an equivalent promise-based one using standard library functions.

Creating promises. A promise represents the value of an asynchro-
nous computation, and is in one of three states: pending, ful�lled,
or rejected. The state of a promise can change at most once: from
pending to ful�lled, or from pending to rejected. We will say that
a promise is settled if its state is ful�lled or rejected. Promises are
created by invoking the Promise constructor, and are initially in
the pending state. Promises come equipped with two methods,
resolve and reject, for ful�lling or rejecting the promise with
a particular value, respectively. For example, the following code
assigns a promise to a variable p1 that is either ful�lled with the
value �hello� or rejected with an Error object.
1 const p1 = new Promise((resolve , reject) => {
2 if (Math.random() > 0.5) { resolve (" hello ") ; }
3 else { reject (new Error('oops ')) ; }
4 }) ;

Promises can also be constructed using the functions Promise.
resolve and Promise.reject. Each of these functions takes a single
argument, i.e., the value that the promise should be ful�lled or
rejected with. The following example creates a promise that is
ful�lled with the value 3:
5 const p2 = Promise. resolve (3) ;

Synchronization functions such as Promise.all and Promise.race
are other ways to create promises. They wait on a set of promises
to be settled in any order, returning a single promise.

Registering reactions on promises. The then and catch methods
enable programmers to register reactions on promises, i.e., functions
that are executed asynchronously when a promise is ful�lled or

rejected. The value returned by a reaction is wrapped in another
promise, thus enabling programmers to chain asynchronous com-
putations and propagate errors. For example, the following code
fragment shows the creation of a promise chain that starts with p1:
6 p1.then(function f1 (v) { console . log (v + " �world") ; })
7 .catch(f3 (err) { console . log (" error �occurred : � " + err) ; }

If p1 was ful�lled with the value �hello�, the reaction that is regis-
tered by calling then on p1 on line 6 concatenates that value with
another string ��world� and prints it to the console, Line 7 registers
a reject reaction on the promise that is created by calling then on
line 6. It prints an error message if any of the previous promises in
the chain is rejected. Therefore, the above code snippet will either
print �hello�world� or �error�occurred:�oops�.

Linking promises. Invoking the Promise constructor and the then
and catchmethods creates a new promise ? . However, if the resolve
associated with the Promise constructor is invoked with an argu-
ment that evaluates to a promise ?0, or when a reaction that is reg-
istered by calling then or catch returns a promise ?0, the promise
?0 becomes linked with ? . As such, if ?0 is resolved with a value E ,
then ? is also resolved with E , and if ?0 is rejected with a value 4 ,
then so is ? , and if ?0 remains pending, so does ? . This example:
8 const p3 = Promise. resolve (" hello ")
9 const p4 = Promise. resolve (" there")
10 p3.then(() => p4) // establish link with p4
11 . then((v) => console . log (v)) // prints " there "

creates promises and assigns them to variables p3 and p4. Given
that p3 is ful�lled, its reaction is executed and returns p4, so p4

and the promise returned by p3.then() on line 10 become linked.
Since p4 resolves to �there�, the promise returned by p3.then() on
line 10 resolves to �there� as well, causing the reaction registered
on line 11 to execute and print this value.

async/await. JavaScript’s async/await feature provides a syntactic
enhancement on top of promises. A function declared as async re-
turns a promise that is ful�lled with the function’s return value.

In an async function, await-expressions may be used to wait for a
promise settle. If an expression 4 evaluates to a promise ? , then an
expression await 4 evaluates to E ; if it is rejected with a value err,
err is thrown as an exception that can be caught using try/catch.
12 async function f () {
13 try {
14 let v = await e;
15 /∗ 1 ∗/
16 } catch(e) { /∗ 2 ∗/ }

In the above example, e is an expression that evaluates to a promise
? . The execution of the code fragment /* 1 */ depends on ful�ll-
ment of ? . So onemay think of /* 1 */ as a ful�ll reaction associated
with ? , and similarly the fragment /* 2 */ as a reject reaction of ? .

3 MOTIVATION AND CHALLENGES
This section elaborates on some challenges in identifying parts
of asynchronous code that despite being covered by tests, are not
tested “su�ciently” and thus may include bugs. We use real bug
reports from Figures 1–2 to illustrate the challenging nature of lo-
cating bugs in asynchronous code. These challenges are intensi�ed
by developers’ con�dence in correctness of the code, when their
tests exercise that code. While existing coverage metrics may show

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

17 remove: async (req) => {
18 const dbRepo = await repo.remove(req.args)
19 if (dbRepo && dbRepo.gist) {
20 try {
21 – webhook.remove(req)
22 + await webhook.remove(req)
23 } catch (error) { // handle the error } }
24 return dbRepo
25 }

Figure 1: Implementation of RepoService.remove.

full coverage of these code segments, these metrics are unable to
examine the execution of scenarios speci�c to asynchronous code.

3.1 Unhandled Exceptions
An asynchronous operation can eventually terminate successfully,
or it may fail. While a successful completion is usually the desired
outcome, the failures or exceptional cases should be tested thor-
oughly to assess the applications’ robustness and error recovery.
Exceptional scenarios are often not thoroughly tested by many
applications, which can lead to bugs and unexpected behaviors dur-
ing execution should an exception occur [15]. For instance, await
expressions may be surrounded by try/catch for handling a failed
completion of the async function. However, many applications do
not have adequate exception handling in place and do not su�-
ciently test exceptional and failure cases in their asynchronous code.
In the following example, we discuss how failure to properly handle
the rejection of an asynchronous operation results in the whole
system crashing. The bug occurs despite code coverage reports
showing that the related part of the code was in fact covered.

3.1.1 Example 1. CLA Assistant is a web service that streamlines
the process of signing Contributor License Agreements (CLAs). 1
This project is built by SAP SE 2 developers and has more than 1000
stars. The code in Figure 1 shows the async function RepoService

.remove, which is responsible for removing a repository from CLA
Assistant (using repo.remove on line 18) and removing all of its
webhooks (webhook.remove, line 21).

To handle unexpected errors, the call to webhook.remove is placed
inside a try/catch (lines 20–23), which assures programmers of
the robustness of this code segment. Programmer con�dence in
this code segment is reinforced by covering and exercising all its
statements through the tests. Despite this, a bug was reported
where an unhandled rejection in this method resulted in the hard
shutdown of the service. Further investigation showed that while
there is a try/catch in place to handle errors in removing webhooks,
the developers failed to await the asynchronous webhook.remove

method. Without an await statement, the program does not wait
for the async function to complete its execution. The execution
of RepoService.remove could end before webhook.remove is rejected
with an error asynchronously. The exception was thrown outside
the scope of RepoService.remove and thus the catch clause could
not have caught it, causing an unhandled rejection.

The �x adds an await before webhook.remove tomake RepoService
.remove wait until its completion (line 22).

1https://github.com/cla-assistant/cla-assistant
2https://sap.com

26 async function visibility (preview, widgetValue, params) {
27 – await new Promise(resolve => {
28 + await new Promise((resolve, reject) => {
29 this . trigger_up ('action_demand', {
30 onSuccess: () => resolve () ,
31 + onFailure: () => reject(), // ADDED IN FIX.
32 }) ; }) ;
33 this . trigger_up (' option_visibility_update ' , {show}) ;
34 }

Figure 2: Implementation of async function visibility.

3.2 Pending Asynchronous Operations
An asynchronous operation remains pending until it is “settled” suc-
cessfully or through a failure, i.e., ful�lled or rejected. It is common
to chain asynchronous operations to impose an ordering on their
execution. In such cases, successful and exceptional completion of
an asynchronous operation each trigger respective reactions, and
the execution of the program continues. It is typically expected for
all asynchronous operations to “settle.” In cases where this does not
happen, the appropriate reactions are not invoked, and the chain
of execution is interrupted. The following example demonstrates
a real bug where a pending asynchronous operation causes the
program to freeze in a loading state, preventing the users from
further interactions with the system.

3.2.1 Example 2. Figure 2 shows changes related to a bug �x from
Odoo, a suite of web-based open source business apps, including
Marketing, eCommerce, and Website Builder apps. 3 It has nearly
25K stars on GitHub and is forked over 16K times. The async func-
tion visibility is responsible for updating the visibility of a �eld
inside a widget in the sidebar menu of the website builder. The exe-
cution of this method depends on the completion of a promise that
noti�es the parent widget to toggle its visibility (lines 27–32). The
noti�cation occurs through trigger_up on lines 29–32. A reaction
is assigned to this operation that is invoked upon its successful
completion, ful�lling the promise (line 30). The visibility method
then makes the �eld on the widget visible, allowing the user to
interact with the editor (line 33).

The bug report indicates a scenario where awidget is frozen, with
a spinner spinning forever. The issue occurs when the event �red by
trigger_up ends with an exception. Hence, the onSuccess callback
is not called to ful�ll the promise. As there is no reject reaction
devised for unsuccessful completion of the promise, it never settles.
As the execution of the remaining part of the visibility method
depends on the settlement of the promise, the pending promise
prevents the execution of line 33. This causes the widget to get
stuck in a loading state, making the application dysfunctional.

The �x rejects the promise upon failure of trigger_up (line 31),
which settles the promise and allows the execution to continue.

4 ASYNCHRONOUS COVERAGE CRITERIA
Our goal is to de�ne coverage criteria that re�ect to what extent the
possible asynchronous behaviors of an application are exercised,
focusing on promise-based asynchrony. Figure 3 illustrates the
life cycle of a promise: Upon creation, a promise is in the pending
state from whence it may transition to the settled state when it is
3https://github.com/odoo/odoo/pull/87123

https://github.com/cla-assistant/cla-assistant
https://sap.com
https://github.com/odoo/odoo/pull/87123

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

Pending
new Promise(…)

Settled
fulfill
reject

.then/.catch
register reaction

.then/.catch
register reaction

execute reaction

Figure 3: Illustration of the life cycle of a promise.

ful�lled or rejected. Reactions may be registered on a promise at
any time in the pending or settled state. Such reactions will execute
when the promise is settled. Our coverage criteria re�ect the key
steps of promise settlement, promise registration, and promise
execution. It is noteworthy that none of these steps subsumes the
others because: (i) settlement of a promise does not imply that
reactions are registered on it, (ii) registration of a reaction of a
promise does not imply that the promise will be settled (and hence
that the reaction will execute), and (iii) execution of a reaction of a
promise requires both settlement of the promise and registration
of the reaction. Further, reactions may be registered on promises
after they have settled. By proposing distinct criteria for each step,
issues that result in failure to ful�ll a promise and failure to register
a reaction will manifest themselves through lack of coverage.

We de�ne our criteria in terms of events in execution traces
that pertain to the use of asynchronous features. We de�ne three
coverage criteria that target the completion of all asynchronous
operations (successful and exceptional), registration of reactions
for both outcomes of the operations, and the execution of said
reactions, respectively. We begin by de�ning coverage notions for
JavaScript applications that use promises, and will then explain
informally how these notions extend to async/await. Finally, we
will discuss the feasibility of these criteria.

4.1 Events and Traces
Table 1 de�nes the promise-related events that may occur during
execution. Here, we assume that each promise that is created at run
time has a unique promise identi�er (pid). Further, let S de�ne the
set of source locations where promises are created, including: (i)
calls to the Promise constructor, (ii) calls to Promise.resolve() and
Promise.reject(), (iii) calls to then, catch, and finally on promise
objects, (iv) calls to Promise.all, Promise.race, Promise.any, and
Promise.allSettled, and (v) the end of execution of an async func-
tion (either normal or exceptional exit).

Create events occur when any of situations (i)-(v) occurs. Link
events occur when the resolve function associated with a call to the
Promise constructor or Promise.resolve is invoked with an argu-
ment that is a promise. A Link event is always immediately preceded
by a Create event.

Ful�lled events occur when the resolve function associated with
a Promise is invoked with an argument that is not a promise, and
when a reaction returns a value that is not a promise. Likewise,
Rejected events occur when the reject function associated with a
Promise is invoked, and when a reaction throws an exception. Note
that the trace only records Ful�lled and Rejected events for promises
that are explicitly ful�lled or rejected (and not for linked promises).

Regful�ll events happen when then is used to register a ful�ll-
reaction on a promise, and Regreject events happen when catch or

the second argument of then is used to register a reject-reaction.
Lastly, Execful�ll and Execreject events happen when a previously
registered ful�ll-reaction or reject-reaction starts executing.

4.2 Coverage Criteria for Promise-Based Code
In the de�nitions that follow, pid, pid0, · · · represent promise iden-
ti�ers, 5 , 5 0, · · · denote functions, and loc, loc0, · · · denote source
locations. De�nition 1 de�nes a trace as a sequence of trace events
(see Table 1). We will use g, g 0, · · · to refer to execution traces.

D��������� 1 (�����). A trace is an ordered sequence of trace
events as speci�ed in Table 1.

For each promise pid that occurs in a trace g , there is a unique
trace element Create(pid, loc) corresponding to its creation. We
de�ne loc(pid) as the location loc that is referenced in this trace
element. The �rst coverage criterion we de�ne is settlement cover-
age. This measures the fraction of promises de�ned by an applica-
tion that are settled (i.e., ful�lled or rejected). Here, we consider
a promise pid originating from location loc to be fully covered if
the trace contains both Ful�lled and Rejected events for pid, which
requires location loc to be executed at least twice. Moreover, when a
Ful�lled or Rejected event is observed for a promise pid, all promises
directly or indirectly linked with pid are settled as well. To capture
this, we �rst de�ne L(pid, g) to denote the set of promises linked
to pid in trace g .

D��������� 2 (������ ��������). Let pid be the promise identi�er
for a promise. Then, the set of promises linked to pid in a trace g ,
denoted by L(pid, g), is de�ned as:

L(pid, g) = { pid0 | pid0 = pid or
9loc : Link(pid, pid0 , loc) 2 g, pid0 2 L(pid, g) }

Note that pid itself is also an element of L(pid, g).
Using De�nition 2, we now de�ne the notion of settlement cov-

erage as stated in De�nition 3. Informally, the de�nition computes
the number of locations loc0 of promises pid0 that are linked to a
promise pid for which a Ful�lled or a Rejected event occurs in the
trace g . It then divides the sum of these by 2 ⇤ |S|, where S is the
number of locations where a promise is created.

D��������� 3 (���������� ��������). Let program P create
promises at locations in S, and let g be the trace for an execution of
P. We de�ne the settlement coverage of g as:

| { loc0 | Ful�lled(pid, loc) 2 g, pid0 2 L(pid, g), loc0 = loc(pid0) } |+
| { loc0 | Rejected(pid, loc) 2 g, pid0 2 L(pid, g), loc0 = loc(pid0) } |

2 ⇤ |S |

Our next goal is to measure the percentage of promises on which
reactions are registered. Here, we consider a promise fully covered
if both a ful�ll reaction and a reject reaction are registered on it.
However, we need to consider that the rejection of a promise ?
may be handled by a reject reaction that is not registered directly
on ? itself, but at the end of a promise chain that starts with ? . To
capture this, we de�ne the set of dependent promises pid that occur
at the end of a chain of ful�ll-reactions that starts at pid. In such
cases, we will write pid pid0, as de�ned below in De�nition 4.

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Create(pid, loc) creation of promise pid at location loc
Ful�lled(pid, loc) promise pid is ful�lled at location loc
Rejected(pid, loc) promise pid is rejected at location loc
Link(pid, pid0 , loc) promise pid becomes linked to promise pid0 at location loc
Regful�ll (pid, 5 , loc, [pid

0]) register ful�ll reaction 5 on promise pid at location loc, which may chain it to promise pid0

Regreject (pid, 5 , loc, [pid
0]) register reject reaction 5 on promise pid at location loc, which may chain it to promise pid0

Execful�ll (pid, 5 , loc) execute ful�ll reaction 5 on promise pid at location loc
Execreject (pid, 5 , loc) execute reject reaction 5 on promise pid at location loc

Table 1: Trace events for asynchronous operations.

D��������� 4 (��������� ��������). Let program P create
promises at locations in S, and let g be the trace for an execution of
P. Then:

pid pid0 if
⇢

pid ⌘ pid0 or
pid pid00 and Regful�ll (pid00, loc, 5 , pid0)

UsingDe�nition 4, De�nition 5 below computes reaction registra-
tion coverage through the following steps: (i) compute the number
of locations loc0 where a Regful�ll event occurs on a promise pid for
which a Create event occurs in the trace, (ii) compute the number
of locations loc0 where a Regreject event occurs on a promise pid0,
where pid pid0, and where a Create event for pid occurs in the
trace, and (iii) compute the sum of these, and divide it by 2 ⇤ |S|.

D��������� 5 (�������� ������������ ��������). Let program
P create promises at locations in S, and let g be the trace for an
execution of P. We de�ne the reaction registration coverage of g as:

| { loc0 | Create(pid, loc) 2 g, Regful�ll (pid, 5 , loc0, pid0) 2 g } | +
| { loc0 | Create(pid, loc) 2 g, pid pid0, Regreject (pid0, 5 , loc0, pid00) 2 g } |

2 ⇤ |S |
Lastly, we de�ne the notion of reaction execution coverage, mea-

suring the percentage of promises with executed reactions. This is
expressed by De�nition 6 below, which is similar to De�nition 5,
except that it checks for the presence of Execful�ll and Execreject
events in the trace instead of Regful�ll and Regreject events. Achiev-
ing full reaction execution coverage for a promise created at loc
requires that loc is executed at least twice.

D��������� 6 (�������� ��������� ��������). Let program P
create promise at locations in S, and let g be the trace for an execution
of P. We de�ne the reaction execution coverage of g as:

| { loc0 | Create(pid, loc) 2 g, Execful�ll (pid, 5 ,loc’) 2 g } | +
| { loc0 | Create(pid, loc) 2 g, pid pid0, Execreject (pid0, 5 ,loc’) 2 g } |

2 ⇤ |S |

4.3 async/await
The semantics of JavaScript’s async/await is de�ned in terms of
promises, and provides a more convenient syntax that is highly
similar to that of sequential code. An async function always re-
turns a promise, thus upon calls to async functions a Create event
is included in the trace. When an async function returns a value
that is not a promise, a Ful�lled event is included in the trace to re-
�ect its ful�llment. A Rejected event is emitted if an async function
throws an exception that is not caught within its body. The code
fragment following an await statement will be considered a ful�ll
reaction for the promise ? returned by the async function, and thus
a Regful�ll event will be added to the trace. If the await-expression
is in a try/catch, the catch statement will be the reject reaction,

i.e., a Regreject event. If ? is ful�lled, then an Execful�ll event is emit-
ted. Otherwise, the catch statement executes and an Execreject is
recorded in the trace. Assuming these trace elements, the same
coverage de�nitions apply.

4.4 Example
Consider the following code displaying function fun and its tests.

35 function fun(inputStr) {
36 const p1 = new Promise((resolve) => {
37 resolve (JSON.parse(inputStr)) ;
38 }) . then(function f1(data) {
39 console . log (data. foo .bar)
40 }) ; }
41 // Tests :
42 test ("T1: � inputStr � is � valid � JSON", () => {
43 fun(' {" foo ": � {" bar ": � "Hello ."}} ') ; })
44 test ("T2: � inputStr � is �not �a � valid � JSON", () => {
45 fun('Hello . ') ; })

In order to measure fun’s async coverage criteria, we �rst obtain
the following trace.

46 Create(?83?1 , L36:L38) // Start of T1
47 Ful�lled(?83?1 , L37:L37)
48 Create(?83C⌘4= , L38:L40) // Promise . then () returns a promise
49 Regful�ll (?83?1 , f1, L38:L38, ?83C⌘4=)
50 Ful�lled(?83C⌘4= , L38:L40)
51 Execful�ll (?83?1 , f1, L38:L40)
52 Create(?83 0

?1 , L36:L38) // Start of T2
53 Rejected(?83 0

?1 , L37:L37) // Error thrown by JSON.parse () rejects p1.
54 Create(?83 0

C⌘4= , L38:L40)
55 Regful�ll (?83

0
?1 , f1, L38:L38, ?83

0
C⌘4=)

We then identify two unique promises from the traces obtained
from T1 and T2. The promise created at L36:L38 achieves full (2/2)
settlement coverage with a Ful�lled event in T1 and a Rejected event
in T2. However, the promise created at L38:L40 achieves partial (1/2)
settlement coverage with only one Ful�lled event in T1. Based on
the observed Regful�ll and Regreject events, the two promises achieve
partial (1/2) and minimal (0/2) reaction registration coverage, re-
spectively. reaction execution coverage can also be measured in
a similar manner. Overall, we calculate a total of 75% settlement
coverage, 25% reaction registration coverage, and 25% reaction exe-
cution coverage for function fun. To achieve full coverage, a reject
reaction needs to be registered to both promises (e.g., adding a catch
at the end of the chain). The reaction then needs to be executed
through a newly-written test that rejects the promise at L38:L40.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

Figure 4: JS���� coverage results for CLA Assistant. The open editor shows RepoService.remove in repo.js.

4.5 Feasibility of Asynchronous Coverage
Criteria

The proposed coverage criteria for asynchronous programs are
similar to traditional coverage criteria in the sense that 100% cov-
erage, while desirable, is not always attainable. For example, in a
conditional statement if ⇢ then (1 else (2, if the condition ⇢ always
evaluates to true, then the else-branch and all the statements in
(2 are unreachable, and branch coverage and statement coverage
will be less than 100%.

Analogously, in a code fragment e.then(· · ·), where e is an ex-
pression that evaluates to a promise ? , the promise created by the
call to then will remain pending if ? is never ful�lled causing settle-
ment coverage to remain less than 100%, and reaction registration
coverage and reaction execution coverage may remain below 100%
for similar reasons. Similar scenarios arise for async functions.

5 APPROACH
In this section, we describe our approach and our tool, JS����, for
automatically measuring and visualizing asynchronous coverage
criteria as de�ned in section 4.2. We will use the term “async cov-
erage” to refer to the results of settlement, reaction registration,
and reaction execution coverage combined, as JS���� calculates
and reports them collectively. Our approach relies on the instru-
mentation of asynchronous behaviors of a JavaScript application
on the �y. JS���� executes the instrumented code through the ap-
plication’s test suite to collect execution traces. Next, it utilizes the
traces to locate promises, their reactions, and relations between
them such as chains as means to calculate async coverage. Finally,
JS���� presents the results and relevant warnings in terms of a
textual report and an interactive visualization, embedded within
the development environment of Visual Studio Code. 4

5.1 Instrumentation and Trace Collection
To automatically collect trace events described in Table 1 for a
program, we instrument the behavior of JavaScript promises and
async functions on the �y. Executing the instrumented code through
running the program’s test suite, we obtain a trace of events created
as discussed in section 4.1.
4https://code.visualstudio.com

5.2 Measuring Asynchronous Coverage
As promises can only be settled once, at least two tests are required
to achieve full async coverage for a promise. As such, we uniquely
identify a promise based on its static creation location in the code.
Multiple Create events with the same location across several test
executions in a test suite will be considered as the same promise.
In such cases, coverage reported by JS���� should be interpreted
accordingly. In particular, if full settlement coverage is reported
for a promise created at location !, then this means that at least
one promise created at ! was ful�lled, and at least one promise
created at ! was rejected, meaning that both possible outcomes
were observed.

We then integrate di�erent execution paths corresponding to the
same promise to locate its various settlements, registered reactions
and execution of such reactions. Our analysis may miss promises in
unexercised parts of code due to the incomplete nature of dynamic
analysis. However, the low traditional coverage of these parts will
warn the developers �rst. As such, async coverage is most e�ective
when used complementary to the existing coverage criteria.

Next, we detect relations between promises such as promise
chains and linked promises. By de�nition, a reject reaction at the
end of a chain is capable of catching all exceptions caused by any
promise in that chain. In order to have a more precise representa-
tion of su�cient error handling, our algorithm propagates a reject
reaction in a chain to all of its ancestor promises. Additionally, for
promises returned by catch, we only require Ful�lled event, and the
rest are considered covered. This implies that registering reactions
for catch is optional, as ending chains with a catch is a generally
accepted way of using promises. Similarly, to avoid unresolvable
missing coverage warnings, Regful�ll events are optional for then.
Without these heuristics achieving 100% async coverage would be
impossible, as there will always be one promise without any han-
dlers at the end of any chain. Our algorithm also detects promise
links by locating where a promise ?1 is ful�lled with promise ?2,
and applies all Ful�lled and Rejected events of ?2 to ?1 as well.

Finally, we calculate and visualize the overall async coverage
by combining async coverage of all promises, and report a list of
warnings for all promises’ missing reactions.

https://code.visualstudio.com

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

A���������� O������ T���������� C������� A���������� C�������

Name LOC #Tests #Promises Statement(%) Function(%) Branch(%) Settlement(%) Registration(%) Execution(%)

1. Node Fetch 2475 392 12 97 100 94 74 68 59
2. CLA Assistant 20406 315 225 94 94 84 59 76 56
3. Minipass Fetch 1523 57 20 100 100 100 69 53 53
4. Cacache 1878 95 99 100 100 100 66 66 55
5. Github Action Merge Dependabot 485 42 10 100 100 100 100 100 100
6. Co 470 43 10 99 100 98 84 94 94
7. Delete Empty 272 20 8 91 100 80 47 77 46
8. JSON Schema Ref Parser 3070 256 34 88 88 78 80 92 78
9. Async Cache Dedupe 1476 120 13 100 100 100 56 83 57
10. Environment 4374 328 64 81 76 72 51 70 51
11. Socket Cluster Server 2044 72 52 82 70 70 62 50 41
12. Socket Cluster Client 10648 37 13 73 54 53 68 45 36
13. Minipass 840 131 10 100 100 100 87 50 25
14. Grant 2756 495 29 98 97 89 58 70 56
15. Express HTTP Proxy 798 106 57 96 97 87 70 100 80
16. Install 556 31 7 98 98 95 46 100 78
17. Cachegoose 224 27 8 91 92 79 43 80 30
18. Enquirer 10491 179 88 68 63 61 51 49 43
19. Avvio 5460 180 13 94 95 91 50 56 37
20. Matched 274 30 9 96 100 78 60 100 64
AVERAGE 3385 144 39 92 91 85 64 74 57

Table 2: Summary of di�erent coverage metrics reported by JS���� and traditional coverage.

5.3 Visualizing the Asynchronous Coverage
We designed an interactive visualization integrated in VS Code, a
widely used development environment, based on data gathered from
a preliminary user study we conducted. Users can invoke JS����
on demand (Figure 4, A) to present the results as a textual report
(Figure 4, B&C) and visual cues overlayed on the code (Figure 4,
D–F). JS���� summarizes async coverage results in the Coverage
Overview panel to help with overall understanding of async cov-
erage (Figure 4, B&C). The overview includes clickable warnings,
linked to the locations of their respective promises. JS���� overlays
relevant visual cues on the code in the editor. It highlights promises
using a red-yellow-green “color spectrum” to determine their level
of async coverage (Figure 4, D). As such, the promise in line 82 is
marked red, indicating minimal async coverage. Similarly, the green
and yellow highlights on line 92 and 87 indicate fully and partially
covered promises, respectively. Users can obtain more details on
the warnings on demand, by hovering the mouse over warning
cues (Figure 4, E&F). By leveraging the integration of focus within
the context [25], we help maintain programmers’ mental model of
the overall program while working with individual promises.

5.4 Implementation
We used NodeProf.js [71] for instrumentation and used JavaScript
Proxies to intercept the execution of built-in features for settling
promises and registering their reactions [10]. We utilized program-
matic APIs of Mocha [8] and Tap [9] testing frameworks for au-
tomatic execution of apps and VSCode’s extension development
API to integrate JS���� into its editor. In our implementation of
coverage criteria as per section 4, functions 5 that create and re-
turn a new promise object (similar to util.promisify) are treated
specially: When a call to 5 is encountered, a Create event is gen-
erated for that call and the promise creation inside 5 is ignored.
This custom notion of context-sensitivity [43, 79] during identi-
fying promise-creation sites generally results in lower coverage.
However, the results are more actionable as they enable detecting
lack of coverage when promises are created using helper functions.

6 EVALUATION
In order for our new coverage criteria to be useful, they should
be able to reveal untested asynchronous behaviors that are not de-
tected by traditional coverage criteria. To this end, we �rst measure
coverage according to the new criteria for 20 JavaScript applications,
and study correlations with traditional coverage criteria. Next, we
report on experiments that aim to determine (i) whether the new
coverage criteria identify uncovered code that contains bugs, and (ii)
whether using JS���� can improve developers’ performance when
performing tasks related to assessing test adequacy and debugging.

Our evaluation targets the following research questions:
RQ1. Does having high traditional coverage imply adequate

testing of asynchronous code?
RQ2. How can asynchronous coverage criteria facilitate identi-

fying test inadequacies regarding faulty asynchronous code?
RQ3. How does using JS���� help improve developers’ perfor-

mance in assessing test adequacy and debugging?
RQ4.What is the performance overhead of JS����?

6.1 Asynchronous Coverage
To answer RQ1, we ran JS���� on 20 web applications, measured
three types of asynchronous coverage criteria and studied their
correlations with traditional coverage metrics.

6.1.1 Experimental Design and Procedure. We adopted a similar
approach to Zhou et al. [82] and Davis et al. [27] in selecting 20
open-source JavaScript applications from GitHub. These projects
used promises and/or async/await considerably, were accompanied
by reasonable test suites, and were compatible with Graal.js [7].
They represented various sizes, domains, and architectures and the
average statement coverage of the benchmark applications was
92%. We ran JS���� on the subjects by automatically exercising
them through their tests. We measured the results of the three
asynchronous coverage metrics, and calculated statement, function,
and branch coverage using Istanbul, 5 a popular JavaScript coverage

5https://istanbul.js.org/

https://istanbul.js.org/

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

Statement Function Branch Settlement Registration Execution

Settlement 0.20 0.10 0.26 1 0.11 0.48
Registration 0.49 0.56 0.35 0.11 1 0.79
Execution 0.31 0.33 0.29 0.48 0.79 1

Table 3: Correlation coe�cients for asynchronous and tradi-
tional coverage criteria.

tool. We then examined the possible correlations of our proposed
asynchronous coverage criteria with these traditional criteria.

6.1.2 Results and Discussion. The results are displayed in Table 2.
The �rst four columns show an application’s name, LOC, number
of tests, and number of promise objects observed in the analysis,
respectively. The next three columns depict the results of traditional
coverage criteria, i.e., statement, function, and branch coverage.

Overall, the benchmarks had relatively high traditional coverage
scores, with an average of 92%, 91%, and 85% statement, function,
and branch coverage, respectively. However, it can be seen that
settlement, reaction registration, and reaction execution coverage
scores were much lower, with an average of 64%, 74%, and 57%,
respectively. This means that, on average, the test suite of a typical
JavaScript application 0 exercises 92% of the statements but about
65% of the expected outcomes of its promises and async functions.
0 may not even register over 25% of necessary reactions for async
operations. Even fewer reactions are actually exercised through
tests.

Next, we examined the potential correlations between asyn-
chronous and traditional coverage. We used the Kendall rank corre-
lation coe�cient, which does not assume a normal distribution. The
results, depicted in Table 3, show no strong correlations between
traditional and asynchronous coverage metrics. This indicates that
traditional coverage metrics are not necessarily equipped for iden-
tifying the su�cient execution of asynchronous scenarios through
tests. In other words, covering more lines or functions does not im-
ply covering more of the asynchronous behavior of an application.

Overall, while the high traditional coverage scores raise con�dence
in su�cient testing of the code, they are not equipped with identifying
shortcomings of the tests in asynchronous scenarios. For instance,
while 92% of the statements are exercised on average, only 57% of the
expected reactions of asynchronous operations are invoked.

6.2 Asynchronous Coverage and Test
E�ectiveness

To addressRQ2, we used JS���� and Istanbul to examine both types
of coverage for code snippets related to previously resolved issues
on GitHub. A main application of coverage criteria is identifying
code segments that may contain bugs due to insu�cient coverage,
which can be helpful during debugging. As such, given a set of
known bugs, we investigated (1) if traditional coverage criteria
raise warnings about inadequate testing of faulty asynchronous
code and (2) if JS���� could have helped discover these bugs.

6.2.1 Experimental Design and Procedure. We searched the reposi-
tories of the projects in Table 2 for issues that 1) involved promises
and/or async/await, 2) were closed with the �xes linked to the
relevant commits, and 3) had complete statement coverage in the

Co
mm

it

Ap
p

Ca
teg
or
y

Se
ttl
em
en
t

Re
gis
tra
tio
n

Ex
ec
ut
ion

Sta
tem

en
t

1. #f56491a express-http-proxy Unhandled Exp. 63 96 74 95
2. #d902776 cla-assistant Unhandled Exp. 58 75 55 94
3. #8�7de7 streamroller Unhandled Exp. 60 81 67 100
4. #8e94a60 eslint_d.js Unhandled Exp. 70 65 65 89
5. #6bcf8ca check�re Unhandled Exp. 40 55 40 -
6. #�f6640 postgres Unhandled Exp. 71 83 60 91
7. #2fc9693 haraka Unhandled Exp. 25 33 33 -
8. #e5615da ioredis Unhandled Exp. 76 69 55 95
9. #146bb3b install Unhandled Exp. 50 100 62 98
10. #0d�f52 json-schema-ref-parserUnhandled Exp. 80 91 81 94
11. #cbcdfc6 socketcluster-server Unhandled Exp. 63 50 43 79
12. #dfbafbf clamscan Pending Op. 58 89 62 40
13. #48a2ddf cla-assistant Broken Chain 58 75 55 94
14. #b0a86d4avvio Broken Chain 38 58 38 93
15. #68342f8 libnpmteam Unnecessary Async. 40 83 61 100

Table 4: Asynchrony-related JavaScript issues from Github.

version before the �x. We found seven bugs in six of the reposi-
tories. We expanded our search to real bugs from other projects
on GitHub that met our requirements. We selected a total of 15
bugs. We then ran JS���� on two versions of each project, one
immediately before and one immediately after each bug �x. We
used JS����’s output to investigate the inadequacies of the tests in
exercising the asynchronous behavior in code segments related to
each bug.

6.2.2 Results and Discussion. Table 4 displays the results. Columns
1–3 show the commit pertaining to the bug �x, the application
name, and the bug category, respectively. The next three columns
display the async coverage numbers before the �x. The last column
shows statement coverage before the �x, reported by Istanbul.js.

Overall, JS���� reported insu�cient coverage and relevant warn-
ings for all bugs, addressing which could have helped detect and �x
the bugs before deployment. Statement coverage, however, showed
no sign of warning or insu�cient testing for any of the bugs or their
relevant code segments. Next, we discuss the main categories of
studied bugs and describe how JS����’s reports and warnings could
have bene�ted the bug �nding process through two examples.

Unhandled Exceptions. Developers often neglect to test excep-
tional executions of asynchronous operations [15]. While current
coverage criteria can indicate insu�cient testing of conditions and
branches, they are unable to detect insu�cient testing of alternative
scenarios for asynchronous operations, such as missing reactions
for rejected asynchronous operations or missing error handling.

(Example A) Eslint_d.js is an application that daemonizes ES-
Lint [4] for higher performance and has >30k weekly downloads
on the NPM registry (Table 4, row 4). It caches a single linter ob-
ject to reduce overhead. Line 272 of the left code snippet in Fig-
ure 5-A shows how the async function getCache is invoked to asyn-
chronously retrieve a cached ESLint linter object from a given path.
The program, using await, waits until this promise ful�lls. A bug
was reported in this method despite the full coverage of this code
segment by the tests, as depicted by the green markings by the line
numbers. It stated that the application crashes with an unhandled
promise exception if the path given to getCache cannot be resolved.
The proposed �x added a try/catch around the call to getCache

to allow handling exceptions caused by the rejected promise and
prevent further crashes (Figure 5-A, right snippet, lines 273–278).

https://github.com/villadora/express-http-proxy/pull/274/files
https://github.com/cla-assistant/cla-assistant/commit/d9027760ae943afe768dd14161da444896462e9d
https://github.com/log4js-node/streamroller/pull/160
https://github.com/mantoni/eslint_d.js/pull/215
https://github.com/open-climate-tech/checkfire/commit/6bcf8ca73e66c42f19d2ae2cdc5ff7e16996607
https://github.com/porsager/postgres/commit/fff66407c8dbcfc4c4f30da188d45f090ddcedf3
https://github.com/haraka/Haraka/issues/3048
https://github.com/luin/ioredis/commit/e5615da8786956df08a9b33b6cd4dd31e6eaa759
https://github.com/benjamn/install/commit/146bb3bebad3ca8a99c3bc410b1693e6c05576e3
https://github.com/APIDevTools/json-schema-ref-parser/commit/0dfff5219151c870fdb68045a17c23028c96c85a
https://github.com/SocketCluster/socketcluster-server/commit/cbcdfc6b1a315e251e87ae371f3224fac45e7c36
https://github.com/kylefarris/clamscan/commit/dfbafbf
https://github.com/cla-assistant/cla-assistant/commit/48a2ddff982938d53dcc23178d9bbf246ac8f302
https://github.com/fastify/avvio/commit/b0a86d4473f08ab71ec0bd2d29f80a8e228e1451
https://github.com/npm/libnpmteam/commit/68342f842c0961bb60dc8c6f8731238c5a69a8ea

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 5: JS���� results (highlights and warnings overlayed on code) vs. Istanbul results (markings by the line numbers).

A corresponding test was also added to the test suite that simulates
the exception and exercises the catch block (lines 275-278).

This bug had remained undetected in production for four months.
However, running JS���� on the faulty version of the code reported
insu�cient coverage in terms of a missing reject reaction for the
promise returned by getCache, shown as the highlighted code on
line 272 and the "Missing error handler" warning message box
(Figure 5-A). Having had access to JS���� during testing could have
helped reveal this bug before production.

Our results in Table 4 showed multiple instances of unhandled
exceptions, similarly missed by the applications’ tests. Row 3 is
an example where developers managed to achieve 100% statement
coverage, while still failing to detect a missing reject reaction caus-
ing a crash. Consider our �rst motivating example from section 3.1.
Ambiguous reports mention the same issue two years before the
�x. The issue persisted to a point where it had damaged the users’
trust, with a user calling CLA Assistant a phishing tool. 6

Broken Promise Chains. JavaScript programs will not wait for the
completion of asynchronous operations, unless explicitly speci�ed.
In other words, the execution of operations that depend on the com-
pletion of a promise is reliant on properly chaining them through
promise reactions or await statements. Developers can mistakenly
break the chain of asynchronous operations by not awaiting their
completion [47]. This may alter the �ow of execution leading to
undesired outcomes. Moreover, the outcome of the promise will
not be used, and potential exceptions will not be caught, which
can lead to a myriad of issues in programs. Our �rst motivating
example displayed a case were this mistake led to the CLA Assistant
application crashing, caused by an unhandled exception thrown by
an un-awaited promise (section 3.1).

(Example B) Row 13 of Table 4 shows another issue in CLA
Assistant. Repositories that use CLA Assistant may require contrib-
utors to sign a Contributor License Agreement (CLA) through CLA
Assistant’s web interface.When a user signs a CLA through CLAAs-
sistant’s web interface, handleWebhook is invoked (partially shown
in Figure 5-B). Upon invocation of the async function updateForCla-

NotRequired (line 146), a promise is returned that asynchronously
communicates the status update on the signature to GitHub servers.
It then sends a con�rmation to the user (line 153).

6https://github.com/cla-assistant/cla-assistant/issues/[561,691, and 822]

Users had reported issues where the web interface shows an
updated status for a pull request, whereas on GitHub, the repository
is still pending CLA Assistant’s update. Two other preceding issues
vaguely report the same bug but were unable to reproduce it. 7

JS���� reported low async coverage for the promise on line 146
before the �x (Figure 5-B). The warning states that the promise has
not settled and has no reactions, suggesting a �x through adding
a then or await statement. This matches the �x provided by the de-
velopers for the original issue, which added an await before the call
to updateForClaNotRequired to wait for the function’s completion
before sending a response to user (line 146).

Pending Operations. If not explicitly settled, asynchronous oper-
ations remain pending, causing nontermination or memory leaks.
Such problems often happen as a result of developers treating asyn-
chronous code similar to synchronous code, such as incorrectly
calling return inside the promise executor function to denote its
completion instead of calling resolve as is the case in Table 4,
row 12. For these cases, JS���� reports missing ful�llment and low
settlement coverage for the pending promise.

Unnecessary Asynchrony. Developers may complicate code by
using promises where asynchrony is not required. They may also
nest promises, causing unanticipated broken promise chains. While
generally less severe, JS���� warns about their missing rejections.

Overall, async coverage criteria can e�ectively expose test inad-
equacies related to asynchrony that are not detected by traditional
coverage metrics. As such, JS���� can help identify parts of code that
contain asynchrony-related bugs in practice despite being covered by
traditional coverage.

6.3 Usefulness of Asynchronous Coverage to
Developers

To address RQ3, we conducted a controlled user experiment to
investigate the e�ectiveness of JS���� in helping programmers
identify and debug (un)covered JavaScript code.

6.3.1 Experimental Design and Procedure. Our experiment had a
“between-subject” design to avoid the carryover e�ect. We divided
our participants into two groups: control and experimental groups.
The experimental group had access to a simpli�ed and web-based
7https://github.com/cla-assistant/cla-assistant/issues/[520, 697]

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

Task Description

T1.A Identifying su�ciently tested functions
T1.B Identifying less robust functions (i.e. not su�ciently tested)
T2.A Locating all promises created during testing
T2.B Identifying promises that are not properly tested
T3.A Identifying the underlying causes of a failure
T3.B Finding the �x to the failure

Table 5: Tasks used in the user study.

version of JS���� results. Both groups had access to the code, as
well as statement coverage results from Istanbul, loaded on our web-
based user interface with a style similar to JS���� for consistency.

Variables. Our Independent Variable is the type of tool used,
referred to as Tool from hereon, which is a nominal variable with
two levels: JScope and Istanbul. We have two continuous Dependent
Variables that represent the developers’ performance in completing
the tasks: task completion duration (seconds) and accuracy (%).

Participants.We sent out recruitment emails to graduate stu-
dents’ mailing lists. From the replies, we selected the ones who met
our knowledge requirements of JavaScript development and testing.
The majority of our participants had a medium-level expertise in
JavaScript programming, and familiarity with testing. We recruited
six male and six female participants, aged 21–35, consisting of 10
graduate students and two software engineers, with 1–5 years of ex-
perience in software development. We assigned them randomly to
experimental and control groups. We balanced the expertise based
on our participants’ responses to a pre-questionnaire (section 6.3.1).

Experimental Object. We used a simpli�ed version of the
body.js �le from Node Fetch, 8 a library implementing browsers’
window.fetch in Node.js. For the debugging task, we chose a �xed
bug from Docusaurus, a website building application. 9 The unhan-
dled reject reaction bug, covered by the tests, led to silent failure of
the whole application.

Tasks. We designed three tasks that pertained to test adequacy
and quality assessment (Table 5). T1 and T2 were designed to assess
e�ectiveness of tool in helping programmers identify well-tested
and insu�ciently tested functions and promises. T3 was designed
to investigate the usefulness of Tool in helping participants identify
the underlying causes of the bug (T3.A) and propose a �x (T3.B).

Pre-study. All participants �lled a pre-questionnaire form prior
to their session, indicating their demographic information and their
experience in programming, JavaScript development, and testing,
and self-assessed pro�ciency levels. We used this data to fairly
balance the participants between groups. All participants signed a
consent formed prior to starting the study.

Training. The participants were given refresher tutorials on
main concepts of asynchronous JavaScript, coverage , and Istanbul,
to ensure consistency in the knowledge required for completing
the tasks.. The experimental group also received a tutorial on using
JS����. Both groupswere given some time to familiarize themselves
with the tools and the setup of the experiment.

Task Completion.Next, the participants started performing the
tasks (Table 5). The participants were allowed to interact with the
code and the tools and write their answers on a Google Doc shared
with the examiner. We measured the duration during the session

8https://github.com/node-fetch/node-fetch
9https://github.com/facebook/Docusaurus/issues/238

by providing each task to the participants individually, which they
returned after completing the task. To measure accuracy, we used
pre-de�ned rubrics to mark the responses later.

Post-study. After the session, the participants responded to a
post-questionnaire form with qualitative data on usefulness of the
Tool used and its limitations.

6.3.2 Results and Discussion. We ran the Shapiro-Wilk normality
test on the data, and since the distributions were not normal, we
used Mann-Whitney U tests to analyze the results. The results
showed a statistically signi�cant di�erence (28% on average) on
the total accuracy of responses for the experimental group using
JS���� (Mean=95%, STDDev=9%), compared to the control group
(Mean=74%, STDDev=12%).

The results also showed the control group spent slightly less time
in total (Mean=33:56, STDDev=4:35), compared to the experimental
group (Mean=36:29, STDDev=5:01), although the di�erence was not
statistically signi�cant. The experimental group spent an average
of 12:43, 7.58, and 7:54 minutes for completing T1, T2, and T3,
respectively. The control group spent 6:42, 11:58, 9:12 minutes for
performing the same tasks, on average. The results of individual
tasks showed that although the experimental group spent more time
for completing T1 compared to the control group, they performed
all other tasks faster (14%–33% on average). It was expected for the
experimental group to spend more time on T1 due to the additional
learning curve incurred by their unfamiliarity with JS����, and
they still achieved an average of 33% higher accuracy for T1. For the
remaining tasks, the experimental group performed consistently
faster than the control group, while achieving higher accuracy.

More Accurate Assessment of Test E�ectiveness. The tasks
involved performing various activities including general function
coverage to more speci�c promise coverage, for all of which JS����
showed to improve the accuracy of the participants. We had hypoth-
esized that JS����would be most useful for tasks directly involving
asynchronous interactions. For instance, T2 involved examining
promises and async/await statements, where we expected JS����
to be helpful. Using JS���� helped the experimental group perform
signi�cantly better for T2. They completed this tasks 33% faster
(p=0.02) and 30% more accurately (p=0.04) on average.

Debugging.The e�ectiveness of tests is directly dependent on its
bug �nding capability. Coverage metrics do not directly attribute to
identifying and �xing bugs. However, they can facilitate the process
by guiding programmers towards the less tested portions of the code
that may contain bugs. Using JS���� helped the experimental group
in debugging to achieve more accurate answers while spending less
time locating the underlying causes of a failure (T3.A) and �nding a
�x (T3.B). The results were statistically signi�cant for the accuracy
of the proposed �x (T3.B) where experimental group achieved an
average of 37% higher accuracy (p=0.03).

Participants feedback. Overall, the experimental group found
JS���� useful. In particular, they liked the overview of the coverage
report, interactions with the overlayed visual cues, and the warning
messages that guided them towards missing functionality or tests.

Overall, participants using JS���� performed 28% more accurately
in testing and debugging asynchronous code.

https://github.com/node-fetch/node-fetch
https://github.com/facebook/Docusaurus/issues/238

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

6.4 Performance
We measured the performance of JS���� in terms of its overhead
of instrumentation and test suite execution time by averaging �ve
executions of each test suite, with and without JS����. Our analysis
for the applications in Table 2 indicates a median of 31 seconds of
instrumentation (23–97 seconds). The slowdown factor for execu-
tion of the instrumented code generally ranges 2x–100x (median:
15.5x). The slowdown is similar to other instrumentation-based
dynamic analyses for JavaScript [15, 37, 72].

6.5 Threats to Validity
There are threats pertaining to the representativeness of our par-
ticipants, benchmark projects, or issues. We addressed these by
randomly selecting participants who met the minimum experience
requirements and projects of di�erent sizes from di�erent domains
that met the prerequisites for using JS����. To mitigate the ex-
aminer’s bias in our user study, we delegated the timekeeping to
the participants, allowing them to decide the start and end time of
each task by handing them the tasks separately and asking them
to return it afterwards. We de�ned detailed rubrics for grading the
accuracy of the results prior to the study to address a similar bias in
measuring participants’ accuracy. We tried to alleviate the impact of
expertise level in our study by balancing the participants’ expertise
levels based on their responses to our pre-questionnaire. We made
JS���� and our experimental data available to allow reproducibility.

7 RELATEDWORK
While being the most prominent test quality assessment technique
[83], code coverage criteria have always been under scrutiny
about their e�ectiveness [31, 38–40]. The generic nature of tradi-
tional coverage criteria has led to the emergence of various domain-
speci�c coverage criteria [16, 44, 51, 68, 69, 74]. Several coverage
metrics have been introduced using data-�ow to target concurrency
in actor-based [75], concurrent [67, 80], and distributed programs
[62]. Researchers have proposed novel criteria for dynamic web
applications [49, 58, 84, 85], or loosely typed nature of JavaScript
[22], or DOM elements [56]. None of these techniques, however,
address the asynchronous execution and its respective challenges.

Event-dependent and asynchronous callbacks form a majority of
untested code in JavaScript [31]. Prior work has used static analy-
sis to model event-driven JavaScript [47, 48, 70]. Other work has fo-
cused on constructing promise graphs that express the relationships
between promises and relevant code [47] and detecting promise
anti-patterns based on promise graphs [15]. to identify performance-
related anti-patterns involving promises [77] . Arteca et al. [20]
present a refactoring for enabling additional concurrency by split-
ting and moving await expressions, and Gokhale et al. [36] present a
refactoring for migrating applications from the use of synchronous
APIs to equivalent asynchronous APIs. Moreover, dynamic anal-
ysis has been popularly used in JavaScript [13, 14, 45, 60, 76] to
address the imprecision of static analysis in analyzing JavaScript’s
inherent dynamism [17]. Much research in this area targets un-
derstanding, debugging, and testing techniques for programs in
general[15, 24, 30, 37, 57, 64, 72] [21, 28, 32, 46, 52, 53, 73], and more
recently for asynchronous JavaScript in particular [15] [72][64]. A
long line of research projects has focused on the detection and

remediation of event races [11, 12, 29, 61], concurrency bugs [78],
and schedule fuzzers for event-driven programs [26]. The extensive
research on bug detection and comprehension of asynchrony con-
�rms our argument for the necessity of test adequacy criteria that
take into account the asynchrony in JavaScript and other languages.
Visualization has been e�ectively used for comprehension and
modeling event-driven and asynchronous programs [13–15, 76, 77].
Similar to Seifert et al. [64], we leveraged editor integration to fa-
cilitate the comprehension of asynchronous coverage through an
interactive interface.

Code coverage is crucial in evaluating the e�ectiveness of test
generation techniques such as feedback-directed random testing
[19, 59, 65], dynamic symbolic execution [23, 35, 66], and search-
based and evolutionary techniques [33, 34]. Nessie [19] is a feedback-
directed test generation tool for JavaScript that targets event-driven
asynchrony. Event-driven asynchrony is rapidly being supplanted
by promises and async/await because these features lead to a more
readable and less error-prone code. However, Nessie does not pro-
vide special support for promises and async/await.

Mutation testing is also used as an alternative approach for
measuring test quality [41, 50]. Despite their e�ectiveness, mutation
testing for JavaScript is typically very costly, and has yet to gain
the popularity of code coverage [18, 54, 55, 63].

8 CONCLUDING REMARKS
In this paper, we proposed a set of coverage criteria for assessing the
adequacy of tests with respect to asynchronous program behavior.
We designed an interactive visualization and implemented a tool to
allow programmers to view async coverage results in a typical de-
velopment environment. The results of our evaluation showed that
async coverage metrics are complementary to traditional metrics
and can help programmers detect insu�ciencies of tests and related
bugs in asynchronous code where traditional metrics cannot. Our
user experiment also demonstrated that our tool helps improve
developers’ performance in tasks related to assessing test quality
and debugging of asynchronous code.

The coverage criteria presented in this paper are designed for
JavaScript. As was pointed out in section 2, similar features have
been added to various programming languages [2, 3, 5, 6], and
adapting the coverage criteria to these languages is an interesting
future direction. Another avenue for future work is the development
of test generation techniques that aim to improve asynchronous
coverage. For example, one could imagine extending Nessie [19]
to register reactions on promises returned by function calls in
previously generated tests.

9 DATA AVAILABILITY
JS���� and our experimental data are publicly available [42].

ACKNOWLEDGMENTS
This work was supported in part by an NSERC Discovery Grant and
National Science Foundation grant CCF-1907727. We are grateful
to the participants of our controlled experiments.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mohammad Ganji, Saba Alimadadi, and Frank Tip

REFERENCES
[1] 2021. ECMAScript 2021 Language Speci�cation. https://www.ecma-international.

org/ecma-262/.
[2] 2022. Asynchronous programming with Async and Await. https://docs.microsoft.

com/en-us/dotnet/visual-basic/programming-guide/concepts/async/ Accessed
Aug-2022.

[3] 2022. Awaitables, python documentation. https://docs.python.org/3/library/
asyncio-task.html#awaitables Accessed Jan-2023.

[4] 2022. Eslint: Pluggable JavaScript Linter. https://www.npmjs.com/package/eslint
Accessed Jan-2023.

[5] 2022. Future (Java Platform SE 8). https://docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Future.html Accessed Aug-2022.

[6] 2022. Future<T> class. https://api.dart.dev/stable/2.18.7/dart-async/Future-
class.html Accessed Jan-2023.

[7] 2022. Graalvm Node.js Runtime. https://istanbul.js.org/ Accessed Aug-2023.
[8] 2022. Mocha, the fun, simple, �exible JavaScript test framework. https://mochajs.

org Accessed Sep-2022.
[9] 2022. Node Tap. https://node-tap.org Accessed Sep-2022.
[10] 2022. Proxy - JavaScript. https://developer.mozilla.org/docs/Web/JavaScript/

Reference/Global_Objects/Proxy Accessed Sep-2022.
[11] Christo�er Quist Adamsen, Anders Møller, Saba Alimadadi, and Frank Tip. 2018.

Practical AJAX race detection for JavaScript web applications. In Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro
Garcia, and Corina S. Pasareanu (Eds.). ACM, 38–48.

[12] Christo�er Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing event race errors by controlling
nondeterminism. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchitel,
Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 289–299.

[13] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2016. Understanding
Asynchronous Interactions in Full-Stack JavaScript. In 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). 1169–1180.

[14] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. 2014.
Understanding JavaScript Event-Based Interactions. In Proceedings of the 36th
International Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 367–377.

[15] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018. Finding Broken
Promises in Asynchronous JavaScript Programs. Proc. ACM Program. Lang. 2,
OOPSLA, Article 162 (oct 2018), 26 pages.

[16] P. Ammann, J. O�utt, and Hong Huang. 2003. Coverage criteria for logical
expressions. In 14th International Symposium on Software Reliability Engineering,
2003. ISSRE 2003. 99–107.

[17] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. ACM Comput. Surv. 50, 5, Article 66 (sep
2017), 36 pages.

[18] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate Tool
for Testing Experiments?. In Proceedings of the 27th International Conference on
Software Engineering (St. Louis, MO, USA) (ICSE ’05). Association for Computing
Machinery, New York, NY, USA, 402–411.

[19] Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. 2022. Nessie:
Automatically Testing JavaScript APIs with Asynchronous Callbacks. In 44th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 1494–1505.

[20] Ellen Arteca, Frank Tip, and Max Schäfer. 2021. Enabling Additional Parallelism
in Asynchronous JavaScript Applications (Artifact). Dagstuhl Artifacts Series 7, 2
(2021), 5:1–5:6.

[21] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip.
2011. A Framework for Automated Testing of Javascript Web Applications. In
Proceedings of the 33rd International Conference on Software Engineering (Waikiki,
Honolulu, HI, USA) (ICSE ’11). Association for Computing Machinery, New York,
NY, USA, 571–580.

[22] Sora Bae, Joonyoung Park, and Sukyoung Ryu. 2017. Partition-Based Coverage
Metrics and Type-Guided Search in Concolic Testing for JavaScript Applica-
tions. In Proceedings of the 5th International FME Workshop on Formal Methods
in Software Engineering (Buenos Aires, Argentina) (FormaliSE ’17). IEEE Press,
72–78.

[23] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2006. EXE: automatically generating inputs of death. In Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, October 30 - November 3, 2006, Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati (Eds.). ACM, 322–335.

[24] Xiaoning Chang, Wensheng Dou, Jun Wei, Tao Huang, Jinhui Xie, Yuetang Deng,
Jianbo Yang, and Jiaheng Yang. 2021. Race Detection for Event-Driven Node.js
Applications. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 480–491.

[25] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. 2009. A review of
overview+detail, zooming, and focus+context interfaces. Comput. Surveys 41, 1,
Article 2 (2009), 31 pages.

[26] James C. Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.fz:
Fuzzing the Server-Side Event-Driven Architecture. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic (Eds.). ACM,
145–160.

[27] James C. Davis, Eric R. Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 343–359.

[28] Monika Dhok, Murali Krishna Ramanathan, and Nishant Sinha. 2016. Type-Aware
Concolic Testing of JavaScript Programs. In Proceedings of the 38th International
Conference on Software Engineering (Austin, Texas) (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 168–179.

[29] André Takeshi Endo and Anders Møller. 2020. NodeRacer: Event Race Detection
for Node.js Applications. In 13th IEEE International Conference on Software Testing,
Validation and Veri�cation, ICST 2020, Porto, Portugal, October 24-28, 2020. IEEE,
120–130.

[30] Amin Milani Fard and Ali Mesbah. 2013. JSNOSE: Detecting JavaScript Code
Smells. In 2013 IEEE 13th InternationalWorking Conference on Source Code Analysis
and Manipulation (SCAM). 116–125.

[31] Amin Milani Fard and Ali Mesbah. 2017. JavaScript: The (Un)Covered Parts. In
2017 IEEE International Conference on Software Testing, Veri�cation and Validation
(ICST). 230–240.

[32] Amin Milani Fard, Ali Mesbah, and Eric Wohlstadter. 2015. Generating Fixtures
for JavaScript Unit Testing. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (Lincoln, Nebraska) (ASE ’15).
IEEE Press, 190–200.

[33] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole Test
Suites. In Proceedings of the 11th International Conference on Quality Software,
QSIC 2011, Madrid, Spain, July 13-14, 2011, Manuel Núñez, Robert M. Hierons,
and Mercedes G. Merayo (Eds.). IEEE Computer Society, 31–40.

[34] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011,
Tibor Gyimóthy and Andreas Zeller (Eds.). ACM, 416–419.

[35] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005, Vivek Sarkar and Mary W. Hall (Eds.). ACM, 213–223.

[36] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic migration from
synchronous to asynchronous JavaScript APIs. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–27.

[37] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (Baltimore, MD,
USA) (ISSTA 2015). Association for Computing Machinery, New York, NY, USA,
94–105.

[38] Hadi Hemmati. 2015. How E�ective Are Code Coverage Criteria?. In 2015 IEEE
International Conference on Software Quality, Reliability and Security. 151–156.

[39] Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale Study of
Test Coverage Evolution. Association for Computing Machinery, New York, NY,
USA, 53–63.

[40] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite E�ectiveness. In Proceedings of the 36th International Conference on
Software Engineering (Hyderabad, India) (ICSE 2014). Association for Computing
Machinery, New York, NY, USA, 435–445.

[41] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011),
649–678.

[42] JScope 2023. JScope. https://github.com/SEatSFU/JScope.
[43] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,

John Sarracino, BenWiedermann, and Ben Hardekopf. 2014. JSAI: A Static Analy-
sis Platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE
2014). Association for Computing Machinery, New York, NY, USA, 121–132.

[44] Kenneth Koster and David Kao. 2007. State coverage: A structural test adequacy
criterion for behavior checking. 541–544.

[45] Ding Li, James Mickens, Suman Nath, and Lenin Ravindranath. 2015. Domino:
Understanding Wide-Area, Asynchronous Event Causality in Web Applications.
In Proceedings of the Sixth ACM Symposium on Cloud Computing (Kohala Coast,
Hawaii) (SoCC ’15). Association for Computing Machinery, New York, NY, USA,
182–188.

[46] Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: Automatic
Symbolic Testing of JavaScript Web Applications. In Proceedings of the 22nd ACM

https://www.ecma-international.org/ecma-262/
https://www.ecma-international.org/ecma-262/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/
https://docs.python.org/3/library/asyncio-task.html#awaitables
https://docs.python.org/3/library/asyncio-task.html#awaitables
https://www.npmjs.com/package/eslint
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://api.dart.dev/stable/2.18.7/dart-async/Future-class.html
https://api.dart.dev/stable/2.18.7/dart-async/Future-class.html
https://istanbul.js.org/
https://mochajs.org
https://mochajs.org
https://node-tap.org
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://github.com/SEatSFU/JScope

Code Coverage Criteria for Asynchronous Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

SIGSOFT International Symposium on Foundations of Software Engineering (Hong
Kong, China) (FSE 2014). Association for Computing Machinery, New York, NY,
USA, 449–459.

[47] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning
about JavaScript Promises. Proc. ACM Program. Lang. 1, OOPSLA, Article 86 (oct
2017), 24 pages.

[48] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static Analysis of Event-
Driven Node.js JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Comput-
ing Machinery, New York, NY, USA, 505–519.

[49] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. Test Cover-
age Criteria for RESTful Web APIs. Association for Computing Machinery, New
York, NY, USA, 15–21.

[50] author. Memon, Atif. 2019. Mutation Testing Advances: An Analysis and Survey.
Advances in Computers, Vol. 112. Academic Press„ Cambridge, MA :.

[51] Atif M. Memon, Mary Lou So�a, and Martha E. Pollack. 2001. Coverage Criteria
for GUI Testing. SIGSOFT Softw. Eng. Notes 26, 5 (sep 2001), 256–267.

[52] AminMilani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Leveraging Existing
Tests in Automated Test Generation for Web Applications. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineering
(Vasteras, Sweden) (ASE ’14). Association for Computing Machinery, New York,
NY, USA, 67–78.

[53] Shabnam Mirshokraie and Ali Mesbah. 2012. JSART: JavaScript Assertion-Based
Regression Testing. In Web Engineering, Marco Brambilla, Takehiro Tokuda, and
Robert Tolksdorf (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 238–252.

[54] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2013. PYTHIA:
Generating test cases with oracles for JavaScript applications. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
610–615.

[55] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2014. Guided
mutation testing for JavaScript web applications. IEEE Transactions on Software
Engineering 41, 5 (2014), 429–444.

[56] Mehdi Mirzaaghaei and Ali Mesbah. 2014. DOM-Based Test Adequacy Criteria
for Web Applications. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for
Computing Machinery, New York, NY, USA, 71–81.

[57] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript
Races That Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Comput-
ing Machinery, New York, NY, USA, 381–392.

[58] Hung Nguyen, Hung Phan, Christian Kästner, and Nguyen Tien. 2019. Exploring
output-based coverage for testing PHP web applications. Automated Software
Engineering 26 (03 2019).

[59] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE
Computer Society, 75–84.

[60] Ohad Rau, Caleb Voss, and Vivek Sarkar. 2021. Linear Promises: Towards Safer
Concurrent Programming. In 35th European Conference on Object-Oriented Pro-
gramming (ECOOP 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 194), Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 13:1–13:27.

[61] Veselin Raychev, Martin T. Vechev, and Manu Sridharan. 2013. E�ective race
detection for event-driven programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.).
ACM, 151–166.

[62] Christopher Robinson-Mallett, Robert M. Hierons, and Peter Liggesmeyer. 2006.
Achieving Communication Coverage in Testing. SIGSOFT Softw. Eng. Notes 31, 6
(nov 2006), 1–10.

[63] Diego Rodríguez-Baquero and Mario Linares-Vásquez. 2018. Mutode: Generic
JavaScript and Node.Js Mutation Testing Tool. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 372–375.

[64] Dominik Seifert, MichaelWan, JaneHsu, and Benson Yeh. 2022. AnAsynchronous
Call Graph for JavaScript. In 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). 29–30.

[65] Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip. 2018. Test
generation for higher-order functions in dynamic languages. Proc. ACM Program.
Lang. 2, OOPSLA (2018), 161:1–161:27.

[66] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, Michel Wer-
melinger and Harald C. Gall (Eds.). ACM, 263–272.

[67] Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum. 2009. Saturation-
Based Testing of Concurrent Programs. In Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (Amsterdam, The Netherlands) (ES-
EC/FSE ’09). Association for Computing Machinery, New York, NY, USA, 53–62.

[68] S. Sinha and M.J. Harrold. 1999. Criteria for testing exception-handling con-
structs in Java programs. In Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360). 265–274.

[69] Khashayar Etemadi Someoliayi, Sajad Jalali, Mostafa Mahdieh, and Seyed-Hassan
Mirian-Hosseinabadi. 2019. Program State Coverage: A Test Coverage Metric
Based on Executed Program States. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 584–588.

[70] Thodoris Sotiropoulos and Benjamin Livshits. 2019. Static Analysis for Asyn-
chronous JavaScript Programs. In 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom (LIPIcs,
Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 8:1–8:30.

[71] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-
�cient Dynamic Analysis for Node.Js. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). Association for
Computing Machinery, New York, NY, USA, 196–206.

[72] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. 2019. Rea-
soning about the Node.Js Event Loop Using Async Graphs. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimization
(Washington, DC, USA) (CGO 2019). IEEE Press, 61–72.

[73] Haiyang Sun, Andrea Rosà, Daniele Bonetta, and Walter Binder. 2021. Auto-
matically Assessing and Extending Code Coverage for NPM Packages. In 2021
IEEE/ACM International Conference on Automation of Software Test (AST). 40–49.

[74] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. 2019. Structural Test Coverage Criteria for Deep Neural Networks.
ACM Trans. Embed. Comput. Syst. 18, 5s, Article 94 (oct 2019), 23 pages.

[75] Samira Tasharo�, Michael Pradel, Yu Lin, and Ralph Johnson. 2013. Bita: Coverage-
guided, automatic testing of actor programs. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 114–124.

[76] Ena Tominaga, Yoshitaka Arahori, and Katsuhiko Gondow. 2019. AwaitViz: A
Visualizer of JavaScript’s Async/Await Execution Order. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing (Limassol, Cyprus) (SAC
’19). Association for Computing Machinery, New York, NY, USA, 2515–2524.

[77] Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip. 2022. DrAsync:
Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript. In Pro-
ceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY,
USA, 774–785.

[78] Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun
Wei. 2017. A comprehensive study on real world concurrency bugs in Node.js. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, Grigore
Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society,
520–531.

[79] Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for
JavaScript. In 29th European Conference on Object-Oriented Programming (ECOOP
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang
Boyland (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 712–734.

[80] Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollock. 1998. All-Du-Path Cover-
age for Parallel Programs. In Proceedings of the 1998 ACM SIGSOFT International
Symposium on Software Testing and Analysis (Clearwater Beach, Florida, USA)
(ISSTA ’98). Association for Computing Machinery, New York, NY, USA, 153–162.

[81] Yucheng Zhang and Ali Mesbah. 2015. Assertions Are Strongly Correlated
with Test Suite E�ectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 214–224.

[82] Jingyao Zhou, Lei Xu, Gongzheng Lu, Weifeng Zhang, and Xiangyu Zhang. 2023.
NodeRT: Detecting Races in Node.Js Applications Practically. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
(Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New
York, NY, USA, 1332–1344.

[83] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv. 29, 4 (dec 1997), 366–427.

[84] Yunxiao Zou, Zhenyu Chen, Yunhui Zheng, Xiangyu Zhang, and Zebao Gao. 2014.
Virtual DOM Coverage for E�ective Testing of Dynamic Web Applications. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 60–70.

[85] Yunxiao Zou, Chunrong Fang, Zhenyu Chen, Xiaofang Zhang, and Zhihong Zhao.
2013. A Hybrid Coverage Criterion for DynamicWeb Testing (S). In SEKE.

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Challenges
	3.1 Unhandled Exceptions
	3.2 Pending Asynchronous Operations

	4 Asynchronous Coverage Criteria
	4.1 Events and Traces
	4.2 Coverage Criteria for Promise-Based Code
	4.3 async/await
	4.4 Example
	4.5 Feasibility of Asynchronous Coverage Criteria

	5 Approach
	5.1 Instrumentation and Trace Collection
	5.2 Measuring Asynchronous Coverage
	5.3 Visualizing the Asynchronous Coverage
	5.4 Implementation

	6 Evaluation
	6.1 Asynchronous Coverage
	6.2 Asynchronous Coverage and Test Effectiveness
	6.3 Usefulness of Asynchronous Coverage to Developers
	6.4 Performance
	6.5 Threats to Validity

	7 Related Work
	8 Concluding Remarks
	9 Data Availability
	Acknowledgments
	References

