
Repairing Event Race Errors
by Controlling Nondeterminism

Christoffer Quist Adamsen∗
Anders Møller

Aarhus University

Aarhus, Denmark

{cqa,amoeller}@cs.au.dk

Rezwana Karim
Manu Sridharan†

Samsung Research America

Mountain View, CA, USA

rezwana.k@samsung.com

manu@sridharan.net

Frank Tip

Northeastern University

Boston, MA, USA

f.tip@northeastern.edu

Koushik Sen

EECS Department

UC Berkeley, CA, USA

ksen@cs.berkeley.edu

Abstract—Modern web applications are written in an event-
driven style, in which event handlers execute asynchronously in
response to user or system events. The nondeterminism arising
from this programming style can lead to pernicious errors. Recent
work focuses on detecting event races and classifying them as
harmful or harmless. However, since modifying the source code
to prevent harmful races can be a difficult and error-prone task,
it may be preferable to steer away from the bad executions.

In this paper, we present a technique for automated repair
of event race errors in JavaScript web applications. Our ap-
proach relies on an event controller that restricts event handler
scheduling in the browser according to a specified repair policy,
by intercepting and carefully postponing or discarding selected
events. We have implemented the technique in a tool called
EventRaceCommander , which relies entirely on source code in-
strumentation, and evaluated it by repairing more than 100 event
race errors that occur in the web applications from the largest 20
of the Fortune 500 companies. Our results show that application-
independent repair policies usually suffice to repair event race
errors without excessive negative impact on performance or user
experience, though application-specific repair policies that target
specific event races are sometimes desirable.

Keywords-JavaScript; event-driven programming; automated
repair

I. INTRODUCTION

Modern application development has largely moved to

platforms requiring event-driven programming, using web

browsers and mobile platforms. The event-driven model is

well-suited to the needs of today’s interactive programs, which

must perform high-latency network requests to send and re-

ceive requested data while remaining responsive to user input.

However, as studied in recent work [8, 11, 21, 22, 25, 34],

this programming style can cause pernicious nondeterminism

errors, which can lead to crashes, lost user data, and malfunc-

tioning user interfaces.

Recent work has attacked this nondeterminism problem

through tools for detecting event races, where application

behavior may differ depending on the order in which event

handlers are executed. For web applications, event race detec-

tors are capable of finding errors in real-world, deployed web

∗The work of this author was carried out during an internship at Samsung
Research America.†The author’s current affiliation is Uber.

applications [25]. Further, tools such as R4 [11] can filter away

warnings about races that do not affect the external behavior

of web applications.

Despite these advances, the output of state-of-the-art event

race detectors is often still not practical. Diagnosing the

root cause of an event race in a real-world web application

can require a significant effort—it often requires deciphering

complex event sequences, and it can be difficult to classify

how harmful a reported race is, especially for non-expert

users of the tools. In addition, preventing such races may

require introducing complex synchronization into the code, an

arduous task since the web platform provides few mechanisms

for synchronizing across event handlers. Manually devising

such a fix is often not worth the effort, particularly for minor

errors, when considering that fixes sometimes have unforeseen

consequences [31]. Better techniques are needed to reduce the

cost of fixing event race errors.

In this work, we explore automated repair of event race er-

rors in web applications. Automated repair holds great promise

for addressing the aforementioned drawbacks of event race

detectors. If event race errors can be automatically repaired,

without requiring developers to deeply understand root causes,

the errors may be avoided more often. There is a wide body

of work on repairing races in multi-threaded programs [6, 12–

18, 23, 24, 27, 29, 30, 32, 33], but relatively little work

on repair for event races. Wang et al. [28] have proposed a

repair technique for event races in web applications, but it has

significant limitations in the types of races it can handle (see

Section VIII).

Our approach builds on an event controller that restricts

event handler scheduling in the browser according to a speci-

fied repair policy, by intercepting and carefully postponing or

discarding selected events. Restricting schedules dynamically

to avoid bad orderings is a well-known approach to automated

repair of races in the context of shared-memory concurrency

races, but to our knowledge it has not previously been applied

to event-driven applications. An important property of our

approach is that the event controller is built entirely by instru-

menting the web application code. Most event race detection

tools for JavaScript work using modified browsers, which is

reasonable for detecting races, but not for automated repair,

2017 IEEE/ACM 39th International Conference on Software Engineering

DOI 10.1109/ICSE.2017.34

288

2017 IEEE/ACM 39th International Conference on Software Engineering

1558-1225/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE.2017.34

289

as the code must run on end-user browsers. In spite of relying

solely on light-weight instrumentation, our approach is general

enough to repair common types of event races, although some

event race errors cannot be repaired by merely restricting the

nondeterminism (see Section V-D).

Given this event controller, the question remains of what

policies are required to repair races in practice. A policy

specifies which events to postpone or discard, so choosing

an appropriate policy requires knowledge about which event

orders are good and which are bad. We observe that many

races in web applications can be prevented with a small

collection of application-independent policies. For example,

application developers often expect Ajax response handlers to

execute in a first-in first-out (FIFO) order, and that the page

completes loading before the user interacts with it: many errors

occur when these assumptions are violated. Our application-

independent policies enforce these assumptions, yielding a

simple method for avoiding many races.

Application-independent policies are easy to apply, but may

impact performance or user experience negatively. For exam-

ple, delaying all user events until after the page has loaded

may make the page appear sluggish, and in fact many user

interactions during page load may be perfectly safe (i.e., they

cannot lead to harmful races). We show that these problems

can be alleviated using application-specific policies, which

can be designed, for example, by specializing an application-

independent policy to a particular web application.

In summary, the contributions of this paper are as follows.

• We demonstrate that most errors involving event races

in JavaScript web applications can be repaired auto-

matically, using light-weight instrumentation to steer the

nondeterminism according to a specified repair policy.

• We propose the use of application-independent policies,

which can be specialized as needed to avoid excessive

delay in event processing, or to target specific event races

reported by existing race detection tools.

• We evaluate our approach based on an implementation

called EventRaceCommander , by repairing 117 event

race errors in the websites of the 20 largest companies

from the Fortune 500 list. Our results show that 94 of the

errors can be repaired using application-independent poli-

cies, mostly without excessive negative impact, and that

application-specific policies can alleviate the undesirable

effects when this is not the case.

II. MOTIVATING EXAMPLE

Figure 1 shows a small web application for browsing

through galleries of images, consisting of three files. File

index.html defines a top-level page with two buttons, labeled

“Gallery 1” and “Gallery 2.” Clicking each button causes

function loadThumbs (lines 15–26) to be invoked with the

gallery name “g1” or “g2,” depending on the gallery being

selected. Executing loadThumbs will send an Ajax request

to the server (lines 17–25). When the server responds, the

readystatechange callback function (lines 18–23) is invoked.

This callback parses the response to retrieve an array of

index.html

1 <html>
2 ...
3 <div id="container" ...>
4 ...
5 <button id="g1">Gallery 1</button>
6 <button id="g2">Gallery 2</button>
7 <script src="init.js"></script>
8 <script src="script.js"></script>
9 </html>

init.js

10 document.getElementById(’g1’).addEventListener(
11 ’click’, function () { loadThumbs(’g1’); }, false);
12 document.getElementById(’g2’).addEventListener(
13 ’click’, function () { loadThumbs(’g2’); }, false);

script.js

14 var thumbs;
15 function loadThumbs(name) {
16 thumbs = [];
17 var xhr = new XMLHttpRequest();
18 xhr.onreadystatechange = function () {
19 if (xhr.readyState === XMLHttpRequest.DONE) {
20 thumbs = JSON.parse(xhr.responseText);
21 showThumbs(name);
22 }
23 };
24 xhr.open(’GET’, ’gallery?name=’ + name, true);
25 xhr.send(null);
26 }
27 function showThumbs(name) {
28 container.innerHTML = ’’;
29 for (var pos = 0; pos < thumbs.length; ++pos) {
30 ... // display thumbnail image
31 var b = document.createElement(’button’);
32 b.textContent = ’Delete’;
33 (function (pos) {
34 b.addEventListener(’click’, function (e) {
35 deleteImg(name, pos);
36 }, false);
37 })(pos);
38 container.appendChild(b);
39 }
40 }
41 function deleteImg(name, pos) {
42 ...
43 xhr.open(’POST’, ’gallery?action=delete&name=’
44 + name + ’&img=’ + thumbs[pos].id, true);
45 ...
46 }

Fig. 1. Motivating example (inspired by Zheng et al. [34]).

thumbnail images and stores them in variable thumbs (line 20),

and then invokes showThumbs with the same gallery name as

before. Function showThumbs (lines 27–40) iterates through

thumbs and creates a ‘Delete’ button for each image that, when

clicked, will invoke deleteImg with the gallery name and index

of the image. Function deleteImg (lines 41–46) creates another

Ajax request, requesting the selected image to be deleted from

the server (lines 43–44).

A. Event Races

The example application exhibits three event races that

may cause runtime exceptions or other unexpected behavior,

depending on the order in which event handlers execute. The

corresponding undesirable schedules are illustrated in Figure 2

and discussed in detail below.

A© If the user clicks the “Gallery” buttons before init.js has

executed, then the user event is lost, since the click event

handlers are not yet registered.

289290

index.html
init.js

script.js
(lines 1-46)

index.html
init.js

script.js
(lines 1-46)

user clicks
“Gallery 1”

button

onreadystate-
change

event

user clicks
“Gallery 2”

button

user clicks
“Delete
button TypeError

(no property id in
undefined)

loadThumbs
(lines 15-26)
loadThumbs
(lines 15-26)

showThumbs
(lines 27-40)
showThumbs
(lines 27-40)

loadThumbs
(lines 15-26)
loadThumbs
(lines 15-26)

deleteImg
(lines 41-46)
deleteImg
(lines 41-46)

CC

BB

AA

index.html
(lines 7-9)

index.html
(lines 7-9)

index.html
(lines 1-6)

index.html
(lines 1-6)

init.js
(lines 10-13)
init.js

(lines 10-13)
script.js
(lines 14-46)
script.js
(lines 14-46)

user clicks
“Gallery 2”

button
(click event is lost)

init.js
(lines 10-13)
init.js

(lines 10-13)
index.html

(lines 1-7)
index.html

(lines 1-7)

user clicks
“Gallery 2”

button

ReferenceError
(loadThumbs not declared)

Fig. 2. Illustration of event races in the program of Figure 1.

B© If the user clicks the “Gallery” buttons after executing

init.js, but before script.js has executed, then an event

handler is associated with the click event, but function

loadThumbs is still undeclared. Hence, executing either of

the click event handlers on lines 11 and 13 triggers an

uncaught ReferenceError.
C© Assume the user clicks the “Gallery 1” button after

the entire page has been parsed. This causes loadThumbs

(lines 15–26) to execute with argument “g1,” generating

an Ajax request. When the server responds, the event

handler on lines 18–23 executes, causing showThumbs to ex-

ecute (lines 27–40). If the user then clicks the “Gallery 2”

button, loadThumbs runs again (now with argument “g2”)

assigning an empty array to thumbs before making a sec-

ond Ajax request. Now, say the user clicks the “Delete”

button for an image that is still on the screen, before

the response to the second Ajax request is received.

Then, the click handler on lines 34–36 invokes deleteImg

(lines 41–46), causing the expression thumbs[pos].id to

be evaluated (line 44). But thumbs is still empty! So,

thumbs[pos] evaluates to undefined, and accessing the id

property of undefined yields an uncaught TypeError.

We will refer to scenarios where user events interfere with

initializations performed during page loading (e.g., scenarios
A© and B©) as initialization races. Races such as the one in

scenario C© will be referred to as post-initialization races.

B. Repairing Event Race Errors

The types of problems discussed above commonly occur

when a schedule differs from developers’ expectations. For

example, developers typically test their code in environments

where the parsing and loading of a page is fast and where user

actions do not occur until page loading is complete. Scenarios

like A© and B© violate this assumption, causing various sorts of

errors to arise when user events arrive at inopportune moments.

Similarly, developers commonly assume the network to be fast,

so that responses to Ajax requests are received before the user

performs additional actions. Scenario C©, where the user clicks

on “Delete” before the response for the click on “Gallery 2” is

received, violates this assumption, resulting in a runtime error.

Our approach for preventing undesirable schedules relies

on code instrumentation, and takes as input a repair policy

that specifies constraints on the scheduling of event handlers.

In particular, the web application is instrumented so that all

events are intercepted and monitored by a runtime controller.

At runtime, when an event arrives that is not in accordance

with the repair policy, it is either discarded or postponed until

the execution of the associated event handlers agrees with the

policy. For example, scenarios A© and B© can be prevented

in our approach by an application-independent policy that

postpones user events until all statically declared scripts are

loaded, by intercepting the events and regenerating them later.

(In cases where this policy blocks harmless user events, one

can easily create a policy that only postpones clicks on the

“Gallery” buttons.) Likewise, scenario C© can be prevented

by an application-independent policy that discards user events

after an Ajax request until the response arrives. In such cases,

EventRaceCommander shows a “spinner” on the screen to

inform the end-user that user events are temporarily blocked.

While the three scenarios discussed here can be repaired us-

ing application-independent policies, application-specific poli-

cies may be preferable, as we shall see in Section VII.

III. BACKGROUND ON EVENT RACES

This section defines event races and related concepts using

a simplified version of the formalism of Raychev et al. [25].

We instrument an event-based program to generate a se-

quence of operations, called a trace, for a given execution.

An operation can be of the following kinds (assuming each

event is given a unique identifier u):

• read(u, x) and write(u, x) denote that an event handler

of u reads and writes, respectively, a shared variable x.

• fork(u, v) denotes that an event handler of u creates a

new event v that will be dispatched later.

• begin(u) and end(u) denote the beginning and ending,

respectively, of the execution of u’s event handlers.

We denote the set of all operations by Op, and the event

to which an operation σ belongs by evt(σ). The execution

of a program generates a finite trace τ = σ0 · · ·σn ∈ Op∗.

In event-based programs, all event handlers of an event ex-

ecute atomically without interleaving with the execution of

any handler of another event. Therefore, if an event u gets

dispatched, then all the operations from the event handlers

of u appear as a contiguous subsequence in the trace, where

the first and last operations of the subsequence are begin(u)
and end(u), respectively. If the trace contains an operation

fork(u, v), then begin(u) appears before begin(v), i.e., an event

must be created before it gets dispatched.

A trace τ defines a linear relation <, where σ < σ′ if the

operation σ appears before σ′ in the trace τ . As in traditional

concurrent programs, we can define a happens-before relation

� as the minimal partial order (i.e., a reflexive, anti-symmetric,

transitive relation) over the events of a trace such that u � v if

fork(u, v) ∈ τ or if u and v are user events where begin(u) <

290291

scheduler(σ, τ,P) := (τ · extend(σ, τ,P), update(σ, τ,P))
update(σ, τ,P) := P \ {(q, s, 1, a, r) ∈ PA(σ, τ, Sτ)}⋃ {ri ∈ r(σ) | (q, s, t, a, r) ∈ PA(σ, τ, Sτ)}

extend(σ, τ,P) :=

⎧⎪⎨
⎪⎩

discard(u) if σ ≡ begin(u) ∧ action(u, τ,P) ≡ DISCARD

postpone(u) if σ ≡ begin(u) ∧ action(u, τ,P) ≡ POSTPONE

σ otherwise

action(u, τ,P) := max{a | (q, s, t, a, r) ∈ PA(begin(u), τ, Sτ)},where
DISPATCH < POSTPONE < DISCARD

Fig. 3. The effect of a repair policy on the execution.

begin(v). Two events u and v are unordered, denoted by u ‖ v,

if they are not related by the happens-before relation. We are

now in a position to define the notion of an event race.
An event race (σ, σ′) is a pair of operations from a trace τ

where σ < σ′, evt(σ) ‖ evt(σ′), both σ and σ′ access (i.e.,

read or write) the same shared variable, and at least one of σ
and σ′ is a write.

Recent work has focused on classifying event races as either

harmful or harmless [11, 20, 21, 25]. In general, such classi-

fication is a subjective matter. In many cases, lost user events

or uncaught exceptions do not significantly affect the user ex-

perience and do not require remediation, though for some web

sites such errors are intolerable. Our approach side-steps this

ambiguity by relying on the user of EventRaceCommander
to distinguish desirable schedules from undesirable ones, and

applying a repair policy that prevents undesirable schedules

from taking place. In other words, our approach does not rely

on a particular definition of harmfulness, nor is it limited to

races that are considered harmful.

IV. A FRAMEWORK FOR SPECIFYING REPAIR POLICIES

This section presents a framework for constraining the order

in which event handlers are executed using a specified repair

policy. A repair policy P consists of a set of rules, which upon

their activation (determined by the current trace τ and program

state Sτ of the web application) may discard or postpone

events occurring in the execution. To this end, we add the

following types of operations.

• discard(u) denotes the discarding of event u (i.e., the

event handlers for event u will not be invoked, and no

begin(u) operation will ever appear in the trace).

• postpone(u) denotes the postponement of event u (i.e., u
will be re-emitted later, and at least one of the operations

begin(u), discard(u), postpone(u) will appear in the trace

once u is re-emitted).

A key contribution of our work is that we—based on a study

of many event races in real-world web applications—observe

that harmful races mostly arise for similar reasons, and can be

repaired using application-independent policies.
A rule is a quintuple of the form (q, s, t, a, r) ∈ Q where:

• q is an operation predicate over the operations in Op that

specifies a necessary condition for the rule to be activated

upon the current operation of a scheduler.

• s is an expiration status, which is a predicate over the

pairs of traces and program states that determines if the

rule is enabled or expired.

• t ∈ {1,∞} is a scope. If t = 1, then the rule expires

the first time it is activated, otherwise it remains enabled

until the expiration status s becomes true.

• a ∈ {DISPATCH, DISCARD, POSTPONE} is an action in

response to the event that the rule was activated by.

• r : Op → 2Q is an extension function that maps an

operation to a policy, which is used for dynamically

adding new rules to the existing policy.

For the sake of presentation, we will use (q, s, t, a)
σ
=⇒

r0, . . . , rn to denote the policy {(q, s, t, a, λσ.⋃0≤i≤n ri)},

and (q, s, t, a) to denote the policy {(q, s, t, a,∅)}.

A rule (q, s, t, a, r) ∈ P is activated by an operation σ
in state (τ, Sτ) if q(σ) and ¬s(τ, Sτ) hold, i.e., the rule

matches the operation and is not expired. We denote by

PA(σ, τ, Sτ) the set of rules in P that are activated by σ
in (τ, Sτ). The definition of activated rules enables us to

describe the effect of a repair policy on the execution by

means of a function, scheduler(σ, τ,P) (Figure 3), that maps

an operation, a trace, and a repair policy to an extended trace

and updated policy. The auxiliary function extend(σ, τ,P)
(Figure 3) determines whether events should be discarded or

postponed, by computing the action for σ as a maximum

over the activated actions (multiple rules may be activated

simultaneously). The ordering among actions is defined in

Figure 3. If σ is not a begin operation, then τ is simply

extended with σ. Hence, a policy cannot discard or postpone

an event based on specific operations within an event handler.

Rules can, however, match on specific operations and use them

to modify the policy via the extension function.

In addition to extending the trace τ , the current repair policy

P is replaced by P ′ = update(σ, τ,P) (Figure 3), which

differs from P as follows.

1) All rules with scope 1 that were activated by σ in (τ, Sτ)
are removed from P .

2) P is extended with the rules in r(σ) for every activated

rule (q, s, t, a, r).

We emphasize that postponing one event may require other

events to be postponed as well, due to the happens-before

relation of the original web application. For example, the load

event of a script always follows the execution of the same

script. Our framework automatically enforces such constraints,

and additionally preserves the order of user events.

V. REPAIR POLICIES

We identify five classes of event races that cause many prob-

lems in practice. Section V-A defines application-independent
policies in terms of the framework presented in Section IV.

Then, Section V-B shows how such general policies can

be specialized to particular web applications, for improved

performance and user experience.

291292

quser(σ) := σ = begin(u) ∧ type(u) ∈ {keydown, mousedown, . . . }
qcallback(σ) := σ = begin(u) ∧ (type(u) = timer ∨

(type(u) = load ∧ tagName(target(u)) ∈ {iframe, img}))
qfork(σ) := σ = fork(·, v) ∧ (type(v) ∈ {script-exec, timer} ∨

(type(v) = readystatechange ∧ readyState(target(v)) = 4))
qbegin(u, σ) := σ = begin(u)

ARRIVED(u, τ, Sτ) := begin(u) ∈ τ
PARSED(τ, Sτ) := DOMCONTENTLOADED ∈ ⋃

begin(u)∈τ type(u)

(a) (b)

WAITFOR(u) := (quser, ARRIVED(u),∞, DISCARD)
WAITREC(u) := (qfork, ARRIVED(u),∞, DISPATCH)

fork(v,w)
=====⇒ WAITFOR(w), WAITREC(w)

ORDER(u, v) := (qbegin(v), ARRIVED(u),∞, POSTPONE)
ORDERNEXT(u) := (qfork, ARRIVED(u), 1, DISPATCH)

fork(v,w)
=====⇒ ORDER(u,w)

Pinit,user := (quser, PARSED,∞, POSTPONE)
Pinit,system := (qcallback, PARSED,∞, POSTPONE)

Pasync,user := (qfork,	,∞, DISPATCH)
fork(u,v)
=====⇒ WAITFOR(v)

Pasync,fifo := (qfork,	,∞, DISPATCH)
fork(u,v)
=====⇒ ORDERNEXT(v)

P+
init,user := Pinit,user

⋃ (
(qfork, PARSED,∞, DISPATCH)

fork(u,v)
=====⇒ WAITFOR(v), WAITREC(v)

)

(c) (d)

Fig. 4. Repair policies. (a) operation predicates, (b) expiration status utilities, (c) utility functions, (d) application-independent repair policies.

A. Application-Independent Repair Policies

User events before DOMContentLoaded: Scenarios A©
and B© from Section II-A illustrate initialization races that lead

to undesirable behavior when a user interacts with a web page

before it has been fully parsed. The errors induced by these

races can be repaired by enforcing the policy Pinit,user from

Figure 4(d), where quser is an operation predicate that matches

any user event. Due to the definition of the policy’s expiration

status, PARSED (Figure 4(b)), this policy postpones any user

event until the event handlers of DOMContentLoaded have been

executed. It is easy to see how this policy prevents the errors

in scenarios A© and B© from Section II-A: By preventing

click events on the “Gallery” buttons until the page has been

parsed, the click event handlers will be registered in time, and

the loadThumbs function will be defined before it is invoked,

thereby preventing the ReferenceError.

In this policy, DISCARD could be used instead of

POSTPONE. The DISCARD action is intended for user events

only, since users can always simply repeat their inputs when

the policy allows it, which is not possible for system events.

System events before DOMContentLoaded: Harmful initial-

ization races also arise when system events fire unexpectedly

early. In the following example, which is based on code from

exxon.com, the load event listener attached by the script will

never run if the iframe loads prior to the execution of the script.

47 <iframe src="..." id="iframe"></iframe>
48 ...
49 <script>
50 $(’#iframe’).load(function (e) { /* adjust iframe height */ });
51 </script>

Such errors can be repaired using the policy Pinit,system from

Figure 4(d), which postpones system events, such as the load

event of the iframe in line 47, until the page has been parsed.

Pinit,system matches any iframe or img load event, and any timer

event, with the operation predicate qcallback.

User events while async event is pending: Scenario C©
in Section II-A represents a situation where the application

logic implicitly assumes that asynchronously forked events are

handled atomically, without being interrupted by user events.

Such post-initialization race errors can be prevented using

policy Pasync,user of Figure 4(d). Informally, this policy adds

the rule WAITFOR(v) (Figure 4(c)) to the policy whenever an

operation forks an asynchronous event v (e.g., Ajax request,

asynchronous script request, setTimeout). This rule discards

user events until v is observed in the trace.

Ajax FIFO: Sometimes programmers implicitly assume

that the responses to multiple Ajax requests arrive in the

same order as the requests were made. Consider the fol-

lowing example, which captures the essence of a race from

gazzetta.it [21]:

52 ajax(’POST’, url1, function (a) { document.cookie = f(a); });
53 ajax(’POST’, url2, function (b) { document.cookie = g(b); });

The two callback functions are executed in response to the

first and second Ajax request, respectively. Both functions

assign some data from the server’s response to the same

document.cookie key. Therefore, the value of this key depends

on the order in which Ajax responses arrive.

To prevent such races, we use policy Pasync,fifo of Figure 4(d)

to postpone Ajax response events that would break FIFO

order: Upon each Ajax request operation fork(·, v), the policy

starts listening for the next Ajax request operation fork(·, w)
by adding the rule ORDERNEXT(v). The use of scope 1
in ORDERNEXT ensures that the rule will not be activated

upon any Ajax request operations following fork(·, w). If

begin(v) appears in the trace before fork(·, w), then FIFO is

already maintained and ORDERNEXT(v) expires due to its

expiration status, ARRIVED(v). Otherwise, FIFO is enforced

by ORDER(v, w) (added from ORDERNEXT(v)), which post-

pones begin(w) until begin(v) appears in the trace. Further-

more, ORDERNEXT(w) is added (by the rule in Pasync,fifo) to

order begin(w) with the response of the Ajax request operation

that follows fork(·, w) (if any).

User events before async initialization: Sometimes ini-

tialization actions are being performed by asynchronously

executed code. Consider the following snippet, which was

extracted from flysas.com.

54 <input id="from-airport" /><input id="to-airport" />
55 <script>

292293

56 var lastFrom = ..., lastTo = ...; // inspect cookie
57 $.get(’/service?code=’ + lastFrom, function (from) {
58 $.get(’/service?code=’ + lastTo, function (to) {
59 $(’#from-airport’).val(from.name);
60 $(’#to-airport’).val(to.name);
61 });
62 });
63 </script>

During loading, the user’s input may be overwritten, since the

fields in lines 59–60 are not initialized until the responses of

the two Ajax requests in lines 57–58 have been processed.

This may happen after the DOMCONTENTLOADED event,

and therefore the policy Pinit,user does not suffice to repair

the race. To accommodate for this, we define an extension

of this policy, P+
init,user, that additionally discards user events

until asynchronous initialization has been performed.

Intuitively, P+
init,user continuously adds WAITFOR(v) (which

discards user events until begin(v) appears in the trace) for

every operation fork(·, v) that matches qfork, as long an event

that has been forked by some other operation matching qfork

is pending. For example, if fork(·, v) and fork(·, w) denote

the Ajax requests in lines 57 and 58, respectively, then

WAITFOR(v) is added upon fork(·, v), which discards user

events until the callback in lines 57–62 has executed. In addi-

tion, WAITREC(v) is added, which itself adds WAITFOR(w)
upon fork(·, w). The WAITFOR(w) rule discards user events

until after the callback in lines 58–61.

The WAITREC rule recursively adds new rules to approxi-

mate when asynchronous initialization is over. This may lead

to user events being discarded indefinitely (e.g., in the presence

of image sliders that keep changing automatically). Thus, this

policy should only be used for pages that always “terminate”

(i.e., where the event queue eventually becomes empty if no

more user events are made), or qfork should be defined such

that it excludes operations that are not part of initialization

(e.g., by ignoring timer operations).

B. Application-Specific Policies

The application-independent policies can be applied without

a deep understanding of the races, and suffice for preventing

the majority of the race errors (see Section VII). However,

sometimes the policies negatively affect web page responsive-

ness (e.g., the user experience of a web page can be degraded

when too many user events are interrupted). This motivates

application-specific repair policies that reduce disruption. It is

straightforward to refine an application-independent policy to

specific user events. The manual effort required to design an

“optimal” application-specific policy naturally requires under-

standing the cause of the race.

Specializing an application-independent policy to a concrete

web application is straightforward. As an example, recall

that the race errors exposed by scenarios A© and B© can be

prevented by enforcing the policy Pinit,user. However, this may

unnecessarily affect clicks to buttons other than “Gallery 1”

and “Gallery 2” during page loading. This problem can be

alleviated by refining the operation predicate quser in Pinit,user

to only match click events on those two buttons.

The interruption of the user is still not minimal, though,

since the function loadThumbs (Figure 1, lines 15–26) is de-

clared strictly before the DOMContentLoaded event gets dis-

patched. This can be remedied by, for example, exchanging

the policy’s expiration status from PARSED to one that, unlike

all of the application-independent policies, relies on the actual

program state to return true when loadThumbs is declared in the

global scope of Sτ . With this modification, it not only becomes

clear that the policy covers the event races in question; it also

minimizes the interruption of the user.

C. Effectiveness of Repair Policies

To understand if a repair policy P prevents the bad order

of an event race, recall that state-of-the-art dynamic race

detectors, such as EventRacer [25], report event races as two

operations σ and σ′ in a trace τ where evt(σ) ‖ evt(σ′).
Simply checking that the race disappears when running a

race detector on the instrumented program that enforces P
is too naive, since state-of-the-art race detectors are currently

unable to reason about ad-hoc synchronization and will report

(σ, σ′) as a false positive. On the other hand, checking that

the race becomes covered [25] gives false confidence.1 Indeed,

most races become covered in the instrumented program,

since the execution of event handlers is controlled by ad-hoc

synchronization in the instrumented program.

To see how a repair policy P prevents the bad order of

(σ, σ′), consider that the instrumentation restricts the non-

determinism in the original program, by enforcing an order

among certain events in the execution. Assuming that the

trace τ obtained by the race detector is valid according to

P , it is possible to model the effect of P by defining an

augmented happens-before relation �P as the minimal partial

order such that u �P v if either u � v or P would enforce u
to execute before v. Using this relation, it is possible to tell

if P would prevent the race (σ, σ′) by checking if σ �P σ′

or σ′ �P σ, giving developers a way to automatically repair

races that has been reported from dynamic race detectors (for

a fixed catalogue of policies). The relation �P can be built

for multiple application-independent policies by extending

EventRacer. It remains open for future work to construct the

relation for arbitrary policies.

D. Discussion of Limitations and Liveness

Although it is not a problem for the repair policies we

have presented so far, there is a risk for postponing events

indefinitely, thereby breaking liveness, when enforcing poli-

cies. Generally, we want to prevent some bad ordering v · · ·u
by discarding or postponing v until u has been dispatched.

To avoid breaking liveness, it must be known by the time v is

about to fire that u will inevitably occur later in the execution.

Intuitively, repair policies can only make decisions based

on past events and not on future events. Let F be a set of

events that are known to happen in the future. Initially, F
contains events that always happen during page loading, e.g.,

1Intuitively, a race (σ, σ′) is covered by another race (δ, δ′) if (σ, σ′) is
no longer a race when (δ, δ′) is being treated as synchronization.

293294

DOMContentLoaded. During execution, as soon as some event is

known to happen in the future (e.g., a timeout is registered or

an Ajax request is sent), it is added to F . Perhaps surprisingly,

F may also contain some user events, since a single user event

is typically composed of a sequence of low-level events (e.g.,

a keyup event always follows a keydown event). We now define a

necessary condition for being able to enforce an order u · · · v:

If v comes before u, and u 	∈ F , then there is no way to

steer away from the bad execution without potentially breaking

liveness, since it is unknown if u will ever arrive (safety can

be preserved, though, by postponing v until u, or indefinitely

if u never arrives). Otherwise, if we can define (i) an operation

predicate that identifies begin(v), and (ii) a state predicate that

becomes false at some point after u has been dispatched, then

the desired ordering can be enforced.

We call a repair policy enforceable for a program if it does

not break liveness in any execution. Conversely, we call a race

repairable if there exists an enforceable policy that prevents

the bad order of that race. The application-independent policies

Pinit,user, Pinit,system, Pasync,fifo, and Pasync,user are enforceable for

all programs, and P+
init,user is enforceable for all programs that

“terminate” (see Section V-A).

There are situations where it is not possible to prevent

an ordering v · · ·u by only discarding or postponing events.

Consider the following example:

64 <script>setTimeout(function () { d = document; }, 0);</script>
65 <script>console.log(d.querySelectorAll(’*’).length);</script>

Here, the callback in line 64 is supposed to execute prior to

the script in line 65. If the latter executes first, then the only

possible repair is to postpone its execution. However, this will

change program behavior, since line 65 counts the number of

elements currently in the DOM. We have not seen any such

examples in practice, and hypothesize that this situation is rare.

In other cases, although it is technically possible to repair an

event race error, the result would have such a negative impact

on user experience that we do not consider it. These races

involve event handlers that are triggered when the user merely

moves the cursor (e.g., mouseenter). Using a repair policy, the

user can be provided with feedback that the page is not ready.

However, for this kind of “indirect” user event (as opposed to

mouse clicks and key events), the event handler registration

should rather be performed earlier by changing the code.

VI. IMPLEMENTATION

Our implementation, named EventRaceCommander , instru-

ments HTML and JavaScript source files of a given web

application on-the-fly using mitmproxy [3]. The instrumenta-

tion intercepts relevant operations and interacts with the event

controller, which is loaded before any application code, such

that instrumentation and application code do not race.

The implementation of EventRaceCommander is available

at https://github.com/cs-au-dk/EventRaceCommander.

A. Controlling the execution

For non-DOM events (e.g., timers, Ajax responses),

EventRaceCommander replaces each registration of an event

handler h with the registration of a new event handler h′ that

adds h to a queue maintained by the event controller. This

involves intercepting calls to a small set of global functions

(e.g., setTimeout), and instrumenting all property assignments

to intercept registrations to, e.g., the onreadystatechange prop-

erty of XMLHttpRequest objects.

For DOM events (e.g., click, load), the situation is slightly

more complicated due to capturing and bubbling. These event

delegation mechanisms propagate events from the document

root to the target node and back [1]. EventRaceCommander
handles DOM events as follows. When the page starts loading,

event handlers for all DOM event types are registered for

the capturing phase of the root element (this ensures that

these event handlers are triggered first, since event handlers

are triggered in registration order). When one of these event

handlers is invoked with an event e that was not previously

postponed, the event controller is notified that e has been

emitted. The controller then queries the repair policy for

the action a′ associated with e. If a′ ≡ DISPATCH, then

all event handlers associated with e are triggered, and the

controller is notified that e has been dispatched. Otherwise,

a′ ∈ {DISCARD, POSTPONE}, and the execution of the appli-

cation’s event handlers and other possible side-effects of the

event (e.g., the insertion of a character into a text field) are pre-

vented by calling stopImmediatePropagation and preventDefault

on the event object of e. Furthermore, if a′ ≡ POSTPONE, then

the process is repeated by re-dispatching e asynchronously.

B. Intercepting relevant operations

EventRaceCommander intercepts fork, begin and end in-

structions. Operations of type fork are intercepted by replac-

ing certain browser API functions and intercepting property

assignments. For example, the send function on the prototype

of XMLHttpRequest is replaced by a function that, in addition to

sending the request, notifies the event controller that an Ajax

response event has been forked.

It is insufficient to monitor events for which the program has

an event handler: in order to enforce, e.g., Pasync,fifo, all Ajax

response events must be intercepted, even those that have no

response event handler. EventRaceCommander therefore adds

a default event handler for such events.

VII. EVALUATION

We aim to answer the following research questions.

RQ1: How effective is each of the application-independent

policies of Section V at repairing event race errors?

RQ2: What is the impact of each application-independent re-

pair policy on runtime performance and user experience?

RQ3: Is it possible to reduce runtime overhead and improve

user experience using application-specific policies?

A. Experimental Methodology

Selecting event race errors: We use existing tools, such

as, EventRacer [25] and R4 [11], to identify candidate event

races in the web applications of the 20 largest companies

from the Fortune 500 list. Since front pages of many websites

294295

often contain little dynamic behavior, we manually explore the

selected sites to find interesting pages.

Following Mutlu et al. [20], we focus on observable races

that result in errors, such as, uncaught exceptions or visual

differences so that we can confirm the effectiveness of our

repairs. In order to keep the amount of work manageable,

we examine up to 25 candidate races for each website to

identify whether they are observable. Altogether this gives us

117 errors that are caused by observable races.

Selecting application-independent repair policies: We

study each observable race in detail to identify which of

the application-independent repair policies that can repair the

corresponding error.

Measuring instrumentation overhead: For each web-

site, we create an application-independent policy that repairs

all race errors (possibly by combining multiple application-

independent policies), and measure the overhead of that policy.

We use the Chrome Debugging Protocol [2] to measure:

(i) parsing time (i.e., time to DOMContentLoaded), showing the

cost for loading EventRaceCommander and instrumenting the

source, and (ii) layout time (i.e., time to last layout event

during initialization). In this experiment, we prevent layout

events from triggering indefinitely (e.g., due to a slideshow)

by stopping recursive timer registrations and intervals so that

every web application terminates. We report the mean of 50

repetitions in each case.

User experience: Parsing time and layout time indirectly

reflect the user’s experience: most elements are ready for

user interactions after a page has been parsed, and layout

time reflects perceived responsiveness. In a few cases where

application-independent policies are inadequate because of

undesirable impact on the user experience, we attempt to

design application-specific versions of application-independent

policies that do no exhibit similar problems. For each such

case, we attempt to evaluate the impact on user experience

by comparing the delays in event processing for application-

independent and application-specific policies.

System details: We run the experiments on Ubuntu 15.10

with an Intel Core i7-3770 CPU and 16 GB RAM.

Table I shows the sites and races used to evaluate

EventRaceCommander .2 The “Race errors” column presents

the total number of observable races found in each site. The

“Race classification” columns classify these races. Most of

the observable races that we found are initialization races,

and nearly all of these involve user events, except a race

on att.com, where two dependent scripts are loaded without

any ordering, and on exxon.com, where an iframe load event

handler is registered late. Late event handler registrations tend

to be a recurring problem. We also identify multiple post-

initialization races. These typically cause a web application to

end up in an inconsistent state.

2We did not detect any observable races on berkshirehathaway.com,
valero.com, unitedhealthgroup.com, and kroger.com. Those sites are
excluded from the table.

B. Experimental Results
RQ1: The “Repair policy” columns of Table I reflect the

applicability of the application-independent policies. If, for a

given site, an event race ri appears in the column of repair

policy P , then P repairs the error caused by ri. Otherwise,

no application-independent policy prevents ri, and the race ap-

pears in the “None” column. In our experiments, all observable

races that could not be repaired using application-independent

policies involve indirect user inputs (Section V-D). These races

are relatively harmless (e.g., dropdowns that do not unfold

when the user hovers a menu item with the cursor during

loading). Note that races with the same classification tend to

be prevented using the same policies. This is to be expected,

since Pinit,user, P+
init,user and Pinit,system target initialization races,

unlike Pasync,fifo and Pasync,user.
Although we cannot guarantee that our application-

independent policies always suffice, our results suggest that

the policies can prevent most event race errors in practice:

94 of the 117 event race errors are repairable using our
application-independent policies.

This also suggests that, although EventRaceCommander
relies on a light-weight instrumentation, it provides sufficient

control of the nondeterminism to prevent the races that occur in

practice. Furthermore, the results indicate that our assumption

of what “good” schedules are (Section II-B) agrees with de-

velopers’ expectations (otherwise, our policies would enforce

erroneous schedules).
Table I shows that many race errors can be repaired using

more than one application-independent policy. Not surpris-

ingly, many races can be repaired using both Pinit,user and

P+
init,user, but we also find that Pasync,fifo and Pasync,user often

repair the same race. This happens when a user triggers an

asynchronous event (e.g., an Ajax request) twice. The policy

Pasync,fifo avoids such races by enforcing an order among the

unordered events, whereas Pasync,user postpones user events

while an asynchronous event is pending (thereby ensuring that

event handlers and their forked events execute atomically).
RQ2: The last two columns of Table I show parsing and

layout time. For most sites, the instrumentation overhead is

less than 200ms, which we deem to be acceptable. Small

websites exhibit larger relative overheads due the cost of

including EventRaceCommander’s 32 KB of JavaScript. The

absolute overhead is barely noticeable by a user, though.
Regarding user experience, it is important to interrupt only

user events that are involved in races, and only for as long as

is necessary to prevent undesirable schedules. Generally, we

find that the policies Pinit,system and Pasync,fifo can be enforced

obliviously to the user, since they do not involve user events

and, in our experiments, do not significantly postpone UI

updates. There is often room for improvements over Pinit,user,

Pasync,user, and P+
init,user, since the operation predicates in these

policies are overly general. This is mostly a problem for

P+
init,user in sites that extensively load code asynchronously

(e.g., walmart.com, which uses RequireJS [4]). In such cases,

the page appears to be ready significantly before user input

is tolerated, and an application-specific policy should be used

295296

Race classification Repair policy Instrumentation overhead

R
ac

e
er

ro
rs

P i
ni

t,u
se

r

P+ in
it,

us
er

P i
ni

t,s
ys

te
m

P a
sy

nc
,fi

fo

P a
sy

nc
,u

se
rInitialization

races
Post-init.

races

Website
declare/

event
register/

event
update/
event

system/
user None Parsing (ms) Layout (ms)

walmart.com 14 r1. . . r13 r14 r1. . . r10 r14 r14 r11. . . r13 +609 (1.29x) +247 (1.08x)
exxon.com 7 r1. . . r6 r7 r1. . . r5 r1. . . r5 r6 r7 r7 +20 (1.02x) +23 (1.01x)
chevron.com 8 r1. . . r6 r7. . . r8 r7. . . r8 r7. . . r8 r1. . . r6 +88 (1.12x) +176 (1.13x)
apple.com 3 r1. . . r2 r3 r1. . . r2 r1. . . r2 r3 r3 +69 (1.11x) +65 (1.10x)
gm.com 8 r1. . . r6 r7 r8 r1. . . r6 r1. . . r7 r8 r8 +60 (1.08x) +60 (1.08x)
phillips66.com 3 r1. . . r2 r3 r1 r1. . . r2 r3 r3 +87 (1.14x) +31 (1.04x)
ge.com 10 r1. . . r7 r8. . . r10 r1 r2. . . r7 r8. . . r10 r8. . . r10 +124 (1.08x) +207 (1.13x)
ford.com 1 r1 r1 r1 +154 (1.06x) +155 (1.06x)
cvshealth.com 10 r1. . . r8 r9. . . r10 r1. . . r7 r1. . . r7 r9. . . r10 r9. . . r10 r8 -24 (0.98x) -14 (0.99x)
mckesson.com 2 r1 r2 r1. . . r2 r1. . . r2 +101 (1.08x) +7 (1.00x)
att.com 12 r1. . . r2 r3. . . r12 r3. . . r12 r3. . . r12 r1. . . r2 +723 (1.21x) +699 (1.20x)
verizonwireless.com 13 r1. . . r13 r1. . . r13 r1. . . r13 +360 (1.15x) +266 (1.12)
amerisourcebergen.com 4 r1. . . r4 r1. . . r4 r1. . . r4 +13 (1.04x) +12 (1.03x)
fanniemae.com 5 r1. . . r5 r1. . . r5 r1. . . r5 +143 (1.26x) +70 (1.10x)
costco.com 16 r1. . . r16 r1. . . r3 r1. . . r3 r4. . . r16 +92 (1.11x) +45 (1.03x)
hp.com 1 r1 r1 r1 +35 (1.01x) +37 (1.01x)
total 117 18 78 9 12 61 78 1 14 12 23

TABLE I
OBSERVABLE RACES, APPLICABILITY OF APPLICATION-INDEPENDENT REPAIR POLICIES, AND INSTRUMENTATION OVERHEAD.

Race classification: declare/event: an entity may be used before it is declared, triggering an error (e.g., scenario B©). register/event: an event handler may be
registered late, leading to lost events (e.g., scenario A©, lines 47–51). update/event: a form field may be updated asynchronously, overwriting the user’s input

(e.g., lines 54–63). system/user: a system and user event are unordered, leading to an error or erroneous state (e.g., scenario C©).

to target the relevant user events, and minimize the time in

which the user is disrupted.

Interestingly, we find that some of the websites, e.g. apple.

com, prevent races in ways similar to Pasync,user, by showing a

spinner that takes up most space on the screen, when a user

event leads to asynchronous DOM updates.

RQ3: We now briefly report on two event races where

application-independent repair policies yield suboptimal re-

sults, and discuss how each situation can be remedied using

an application-specific policy.

On att.com, event race r1 can cause a TypeError due

to two scripts being unordered.3 Policy Pasync,fifo ensures

that asynchronous scripts are executed in FIFO order and

fixes the error, but unnecessarily imposes an order on 39

scripts. On average, 21 of these scripts are postponed for

292ms. This can be prevented using a specialized policy

P ′
async,fifo, which only postpones the execution of satellite-

567046aa64746d0712008241.js. On average, this policy post-

pones no scripts at all (i.e., in our experiments, the two scripts

always load in the desired order).

On walmart.com, a click event handler of a button is

registered by an asynchronous script. Until that happens, click

events on the button are lost and no dropdown is shown

(event race error r13). While this problem can be fixed using

the application-independent policy P+
init,user, this results in

excessive delays for processing a click event. We can avoid

such undesirable impact on the user experience by designing

an application-specific policy Pspec that postpones click events

only until the handler is present. In an experiment, we issue

3The global variable s_att is declared in s-code-contents-
65778bc202aa3fe01113e6b6ea6d103eda099fe5.js, and used in
satellite-567046aa64746d0712008241.js. The latter may, depending
on the event order, crash during an assignment to s_att.events.

a click immediately when the button is declared, and measure

the time until the corresponding event handlers execute. On

average, the click event is dispatched 817ms faster when using

the policy Pspec instead of P+
init,user.

The application-specific repair policies discussed above are

both “optimal” in the sense that they only postpone events that

are involved in the races under consideration, for the minimal

amount of time required to prevent the undesired orders. We

argue that, for these race errors, enforcing repair policies using

EventRaceCommander compares well to alternative solutions

such as modifying the code to introduce ad-hoc synchroniza-

tion or explicitly load scripts synchronously.

C. Discussion

Some aspects of our evaluation may affect the generality

of the reported results. Most significantly, the selection of

websites and event race errors used in our evaluation could

be subject to bias. We have attempted to address this concern

by evaluating EventRaceCommander on the websites of the

20 largest companies from the Fortune 500 list, similar to

previous work on event race detection [11, 25].

The code of the websites used in our evaluation may be sub-

ject to change, which may affect reproducibility of our results.

Therefore, we spent significant effort using mitmproxy [3]

to record the server responses for an interaction with every

site under consideration. This enables reproducibility for all

front pages. Regrettably, some highly dynamic pages that we

consider cannot be replayed, since the URLs of Ajax requests

depend on user input, random numbers, timestamps, etc. Still,

this is a significant improvement over recent work [8, 10, 11,

21, 22, 25, 28, 34], where the importance of reproducibility

has mostly been ignored. The recordings from our study are

available with the implementation of EventRaceCommander.

296297

A related concern is that real websites may give rise to

unpredictable network delays, which may affect repair poli-

cies, such as, Pasync,fifo. In principle, these delays can become

arbitrarily large, so the data from our experiments may not

truly reflect the impact on user experience. In our experiments,

we avoid large fluctuations by relying on recordings of every

website, and by conducting experiments 50 times and reporting

average times. To prevent situations where the user is being

disrupted for too long, it would be possible to monitor if

EventRaceCommander postpones an event for more than a

given threshold. In such cases, the event could simply be

dispatched, and the users of EventRaceCommander could be

notified of the incident, so that the policy can be adjusted.

VIII. RELATED WORK

Race detection: Ide et al. [10] pointed out that JavaScript

programs can have data races despite being single-threaded

and non-preemptive. Such races often arise due to asyn-

chronous Ajax communication and HTML parsing. The au-

thors note regarding Ajax races that “the programmer prefers

to think of the interaction with the server as a synchronous

call”, which is also the foundation for our scheduling policies

for such races. Zheng et al. [34] proposed a static analysis

for automatically detecting JavaScript races. Due to the dy-

namic nature of JavaScript, such static analyses are often pro-

hibitively imprecise or unscalable. Inspired by successful tech-

niques developed for multi-threaded programs [7], WebRacer

and EventRacer instead use dynamic analysis and a happens-

before relation [22, 25]. This significantly improves precision,

however, these tools cannot distinguish harmful from benign

races, which has motivated techniques that explore whether

races cause observable differences [8, 11, 21]. Still, these

techniques tend to report many false positives and also miss

harmful races, and it has been observed that the harmful races

that are detected are often difficult to fix.

Event race detection algorithms have also been devel-

oped for Android, using similar techniques as those target-

ing JavaScript, but with more sophisticated happens-before

relations [5, 9, 19]. Adapting our technique to Android is an

interesting opportunity for future work.

Automated fixing of race errors: The idea of automati-

cally fixing race errors has been studied extensively in a multi-

threaded setting, but not much for event-driven applications,

in particular JavaScript.

Some techniques patch the program code by inserting,

e.g., locks and wait-signal operations, based on reports from

race detectors and static analysis [12–16, 29]. The JavaScript

platform provides no explicit synchronization primitives, but

our repair policy mechanism can simulate the effect of having

wait-signal primitives or atomic groups of event handlers.

Other techniques steer away from nondeterministic errors

by postponing selected actions, much like our approach but

for multi-threaded programs. The AI technique [32] attempts

to stall threads where manifestation of a concurrency bug is

about to become deterministic. Kivati [6] uses static analysis

and hardware watchpoints to detect atomicity violations and

then dynamically reorders the relevant instructions. The Aviso

system [17] learns schedule constraints from successful and

failing executions, and then uses these constraints to guide

scheduling, much like our policy mechanism and controller.

The Loom system [30] uses a notion of execution filters, which

resembles our use of application-specific repair policies.

These techniques share the limitation of EventRace-
Commander that they cannot fix all race errors while entirely

avoiding situations where actions are postponed excessively.

Other approaches include rollback-recovery [33], replicated

execution with different schedules [27], replication of shared

state in critical sections [23, 24], or require special hard-

ware [18], which would not be realistic for JavaScript.

EventHealer [26], unlike most of the work mentioned above,

considers event-driven programs, but with a different execution

model than the one in JavaScript: execution takes place in a

main thread, which has lower priority than event handlers,

and preemption is possible but can be selectively disabled

to protect critical sections. The system uses static analysis

to locate event handlers, shared variables, and fragments of

code that should be treated as critical sections, which is very

different from our setting.

None of the work on automated fixing discussed above

targets JavaScript. A position paper by Mutlu et al. [20]

proposes a notion of “schedule shepherding” for JavaScript,

but does not present any mechanism for how to actually do

it. The recent ARROW tool by Wang et al. [28] is the first

to automatically repair races in JavaScript applications. The

key difference to EventRaceCommander is that ARROW is

based on static analysis, which is notoriously difficult for real-

world JavaScript code. Moreover, the main idea in ARROW

is to identify inconsistencies between the happens-before and

def-use relations, which may miss many race errors, even if

more powerful static analysis were developed. ARROW cannot

repair any of the errors in the example application in Section II.

IX. CONCLUSION

We have presented a general framework for controlling

nondeterminism in event-driven applications using specified

repair policies, and proposed application-independent policies

to prevent nondeterminism that commonly triggers event race

errors. The framework is sufficiently general to repair a wide

variety of real-world event race errors. Our experimental re-

sults show that 94 of 117 event race errors are repairable by our

application-independent policies, and that application-specific

policies are useful to target specific races, when needed.

For future work, it will be interesting to automate the

process of inferring application-specific policies for a given

event race, to avoid negative impacts from overly general

policies. Such candidate policies should restrict the nonde-

terminism only as needed to repair a given race, but still

be reasonably general, so that they do not only apply to the

concrete execution explored by the dynamic race detector.

Acknowledgments This work was supported by the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation program (grant agreement No 647544).

297298

REFERENCES

[1] W3C Document Object Model Level 2 Events Specification.
http://www.w3.org/TR/DOM-Level-2-Events/events.
html#Events-flow, last accessed on 2016/08/24.

[2] Chrome Debugging Protocol. https://developer.chrome.
com/devtools/docs/debugger-protocol, last accessed on
2016/08/24.

[3] mitmproxy. https://mitmproxy.org/, last accessed on
2016/08/24.

[4] RequireJS. http://requirejs.org/, last accessed on 2016/08/24.
[5] P. Bielik, V. Raychev, and M. T. Vechev. Scalable race detection for

Android applications. In Proc. 30th ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2015.

[6] L. Chew and D. Lie. Kivati: fast detection and prevention of
atomicity violations. In Proc. 5th European Conference on Computer
Systems (EuroSys), 2010.

[7] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. Commun. ACM, 53(11), 2010.

[8] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in
client-side Java Script web applications. In Proc. 7th IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), 2014.

[9] C. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M.
Chen, Z. Kong, and J. Flinn. Race detection for event-driven
mobile applications. In Proc. 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014.

[10] J. Ide, R. Bodik, and D. Kimelman. Concurrency concerns in rich
internet applications. In Proc. Workshop on Exploiting Concurrency
Efficiently and Correctly, 2009.

[11] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. T. Vechev.
Stateless model checking of event-driven applications. In Proc.
30th ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2015.

[12] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-
violation fixing. In Proc. 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2011.

[13] G. Jin, W. Zhang, and D. Deng. Automated concurrency-bug fixing.
In Proc. 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[14] S. Khoshnood, M. Kusano, and C. Wang. ConcBugAssist: constraint
solving for diagnosis and repair of concurrency bugs. In Proc.
International Symposium on Software Testing and Analysis (ISSTA),
2015.

[15] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing data
races on-the-fly. In Proc. 5th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD), 2007.

[16] P. Liu and C. Zhang. Axis: Automatically fixing atomicity violations
through solving control constraints. In Proc. 34th International
Conference on Software Engineering (ICSE), 2012.

[17] B. Lucia and L. Ceze. Cooperative empirical failure avoidance for
multithreaded programs. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[18] B. Lucia, J. Devietti, L. Ceze, and K. Strauss. Atom-Aid: Detecting
and surviving atomicity violations. IEEE Micro, 29(1), 2009.

[19] P. Maiya, A. Kanade, and R. Majumdar. Race detection for Android
applications. In Proc. 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2014.

[20] E. Mutlu, S. Tasiran, and B. Livshits. I know it when I see it:
Observable races in JavaScript applications. In Proc. Workshop on
Dynamic Languages and Applications (Dyla), 2014.

[21] E. Mutlu, S. Tasiran, and B. Livshits. Detecting JavaScript races
that matter. In Proc. 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2015.

[22] B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby. Race detection
for web applications. In Proc. 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2012.

[23] S. K. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
ISOLATOR: dynamically ensuring isolation in concurrent programs.
In Proc. 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2009.

[24] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. G. Zorn, R. Nag-
pal, and K. Pattabiraman. Efficient runtime detection and toleration
of asymmetric races. IEEE Trans. Computers, 61(4), 2012.

[25] V. Raychev, M. T. Vechev, and M. Sridharan. Effective race de-
tection for event-driven programs. In Proc. 28th ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages, and Applications (OOPSLA), 2013.

[26] G. M. Tchamgoue, K. H. Kim, and Y. Jun. EventHealer: Bypassing
data races in event-driven programs. Journal of Systems and Soft-
ware, 118, 2016.

[27] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and surviving data races using complementary schedules.
In Proc. 23rd ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[28] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster.
ARROW: Automated repair of races on client-side web pages. In
Proc. International Symposium on Software Testing and Analysis
(ISSTA), 2016.

[29] D. Weeratunge, X. Zhang, and S. Jagannathan. Accentuating the
positive: atomicity inference and enforcement using correct execu-
tions. In Proc. 26th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2011.

[30] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications
with execution filters. In Proc. 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[31] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasundaram.
How do fixes become bugs? In Proc. 13th European Software
Engineering Conference and 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2011.

[32] M. Zhang, Y. Wu, S. Lu, S. Qi, J. Ren, and W. Zheng. AI:
a lightweight system for tolerating concurrency bugs. In Proc.
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2014.

[33] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam.
ConAir: featherweight concurrency bug recovery via single-threaded
idempotent execution. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[34] Y. Zheng, T. Bao, and X. Zhang. Statically locating web application
bugs caused by asynchronous calls. In Proc. 20th International
Conference on World Wide Web (WWW), 2011.

298299

